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Content

These slides contain a very brief and informal description of the
intuition that brings one to the notion of a doctrine.

The prerequisites are a general knowledge of:
▶ basic category theoretic notions;
▶ basic first-order logic and its Tarski’s semantics.



Content

▶ Regular logic: syntax and semantics.
▶ The role of the power set functor P : Setop → Pos.
▶ How to abstract and isolate this role: doctrines.
▶ Bonus: the existential and the universal completions.



Regular logic: syntax and semantics.



Regular logic

We are interested in statements of the form ϕ ⊢Γ ψ, called sequents.

A regular language L is made of:
1. sorts A,B,C, ...
2. variables x1, x2, ... : A, y1, y2, ... : B, z1, z2, ... : C, ...
3. function symbols f : A,C → B g : A→ B
h : A2, A1, ..., An, B → C c : 1→ A

4. relation symbols R : A,B S : A1, B,A3, A2, ..., An, B T : A,A,A

Then we can define the L-terms and the L-formulas.



L-terms and L-formulas

The L-terms (in context) are inductively defined as:
1. Any variable x : A is an L-term of sort A in context x : A
2. Whenever t1 : A1 t2 : A2 ... tn : An in a given context Γ and
f : A1, A2, ..., An → B is a function symbol of L, then
f(t1, ..., tn) : B in context Γ.

The L-formulas (in context) are inductively defined as follows:
1. ⊤ is a formula (in any context).
2. If t1, t2 : A are L-terms in context Γ then t1 = t2 is a formula in

context Γ.
3. If R : A1, A2, ..., An is a relation symbol and t1 : A1 t2 : A2 ...
tn : An are L-terms in context Γ then R(t1, ..., tn) is a formula in
context Γ.

4. If ϕ and ψ are formulas in context Γ then ϕ ∧ ψ is a formula in
context Γ and (∃x : A)ϕ is a formula in context Γ \ [x : A].



(Regular) deduction rules for sequents

Some examples:
▶ if ϕ ⊢Γ ψ and ϕ ⊢Γ ω, then ϕ ⊢Γ ψ ∧ ω
▶ if ϕ(y) ⊢Γ∪{y} ψ then (∃y)ϕ(y) ⊢Γ ψ
▶ if ... then ϕ ⊢ T

A (regular) L-theory T is a set of L-sequents. We say that T proves a
sequent if it can be deduced from the elements of T by using the
(regular) deduction rules for sequents.



Semantics
An L-structure M is given by:
▶ a set AM for any sort A of L,
▶ a function fM : AM

1 × ...×AM
n → BM for any function symbol

f : A1, ..., An → B of L,
▶ a subset RM ⊂ AM

1 × ...×AM
n for any relation symbol

R : A1, ..., An of L.

Given an L-structure M , we can interpret L-terms and L-formulas in
M . If Γ is the context x1 : A1, ..., xn : An then we define ΓM as the
cartesian product AM

1 × ...×AM
n .

Terms t : A in context Γ are interpreted as functions:

tM : ΓM → AM .

Formulas ϕ(y⃗) in context y⃗ : Γ are interpreted as subsets:

ϕM ⊆ ΓM .

The function tM and the subset ϕM are defined inductively as follows.



Definition of tM : ΓM → AM

1. If t is a varialbe x : A then tM is the identity function AM → AM .
2. If t is f(t1, ..., tn) where t1 : A1 t2 : A2 ... tn : An in a given

context Γ and f : A1, A2, ..., An → B is a function symbol of L,
then tM is the function:

ΓA ⟨tM1 ,...,tMn ⟩−−−−−−−→ AM
1 × ...×AM

n
fM

−−→ BM .



Definition of ϕM ⊆ ΓM

1. If ϕ is ⊤ and Γ is a context then ϕM is ΓM .
2. If ϕ is t1 = t2 where t1, t2 : A are L-terms in context Γ, then ϕM

is:
{a⃗ ∈ ΓM : tM1 (⃗a) = tM2 (⃗a)}.

3. If ϕ is R(t1, ..., tn) where R : A1, A2, ..., An is a relation symbol
and t1 : A1 t2 : A2 ... tn : An are L-terms in context Γ, then
ϕM is:

⟨tM1 , ..., tMn ⟩−1RM = {a⃗ ∈ ΓM : (tM1 (⃗a), ..., tMn (⃗a)) ∈ RM}.

4. If ϕ and ψ are formulas in context Γ then (ϕ ∧ ψ)M is:

ϕM ∩ ψM

and ((∃x : A)ϕ)M is:

{a⃗ ∈ (Γ \ [x : A])M : there is a ∈ AM such that (⃗a, a) ∈ ϕM}.



Notion of semantics

We say that M models an L-sequent ϕ ⊢Γ ψ if ϕM ⊆ ψM . We say
that M is a model of an L-theory T if M models every sequent of T .

This defines a sound semantics (called Tarski’s semantics for regular
logic). This semantics is also complete if, in place of regular logic, we
include the whole classic first-order logic.



Example

L
A f : A,A→ A c : 1→ A

An L-structure M is a set AM together with a binary function
fM : AM ×AM → AM and a constant cM ∈ AM .

T
⊤ ⊢x,y,z : A f(f(x, y), z) = f(x, f(y, z)) ⊤ ⊢x : A f(x, c) = x = f(c, x)

The L-structure M is a model of T precisely when M is a monoid.



The role of the power set functor
P : Setop → Pos.



The (contravariant) power set functor

We remind that a category C is a collection of composable arrows
A

f−→ B. A functor C → D is a mapping between categories that
preserves compositions and identities.

We are focusing on the functor:

P : Setop → Pos

(A
f←− B) 7→ (PA f−1

−−→ PB)

in order to analyse Tarski’s semantics.



Interpretation of ∧ and ⊤

Let us consider a sort A (for simplicity) of the language L and let
x : A. Let ϕ(x) and ψ(x) be L-formulas in the context x : A. Let us

assume that we already know ϕM , ψM ⊆ AM (for a given L-structure
M). Then:

(ϕ ∧ ψ)M = ϕM ∩ ψM ⊆ AM

Moreover ⊤M = AM (keep in mind also the interpretation of a
sequent of the form ⊤ ⊢x : A ϕ(x)).

We understand that the reason why we can interpret ∧ and ⊤ is
precisely the fact that the images PAM of the sets AM through P are
inf-semilattices.



Interpretation of ∃
We remind that, given a functor G : C → D, a left adjoint F : D → C
is a functor such that there is a (natural) bijection between the arrows
in C of the form FD → C and the arrows in D of the form D → GC,
whenever C : C and D : D. A left adjoint is essentially unique (hence
unique if C is a poset).

Given a projection π : AM ×BM → AM , the functor:

PAM π−1

−−→ P(AM ×BM )

has a left adjoint P(AM ×BM )
∃π−−→ PAM i.e. ∃πS ⊆ T if and only if

S ⊆ π−1T for any S ⊆ AM ×BM and T ⊆ AM .

In fact, if:

∃πS := {a ∈ A : there is b ∈ BM such that (a, b) ∈ S} ⊆ T

and (a, b) ∈ S, then a ∈ T , hence (a, b) ∈ π−1T . Vice versa, if
S ⊂ π−1T and a ∈ ∃πS, then there is b ∈ BM such that
(a, b) ∈ S ⊂ π−1T , hence a ∈ T . But why do we care of this fact?



Interpretation of ∃

Suppose that S ⊆ AM ×BM is the interpretation of some formula
ϕ(x, y) in the context x : A, y : B. I.e. S = ϕ(x, y)M Then:

∃π(ϕ(x, y)M ) = ∃πS
= {a ∈ A : there is b ∈ BM such that (a, b) ∈ S}
= {a ∈ A : there is b ∈ BM such that (a, b) ∈ ϕ(x, y)M}
= ( (∃y)ϕ(x, y) )M .

We undestand that the interpretation of ∃ according to Tarski’s
semantics is completely characterised by the left adjoints to the
inverse image functors along the projections.



Interpretation of =

Given a diagonal ∆: AM → AM ×AM , the functor:

P(AM ×AM )
∆−1

−−−→ PAM

has a left adjoint PAM =A−−→ P(AM ×AM ) i.e. (=A)(S) ⊂ T if and
only if S ⊂ ∆−1T for any S ⊂ AM and any T ⊂ AM ×AM .

In fact one can check that:

(=A)(S) := {(a, b) ∈ S × S : a = b} = {(a, a) : a ∈ S}

works (a pleasant exercise!).

But, again, why do we care of this?



Interpretation of =

Let t1 : A, t2 : A be terms in context Γ. Then tM1 , tM2 : ΓM → AM and
then:

(t1 = t2)
M = {a⃗ ∈ ΓM : tM1 (⃗a) = tM2 (⃗a)}

= {a⃗ ∈ ΓM : (tM1 (⃗a), tM2 (⃗a)) ∈ (=A)(A)}
= ⟨tM1 , tM2 ⟩−1((=A)(A)).

We understand that the interpretation of = can be characterised in
terms of the left adjoints to the inverse image functors along the
diagonals.



Summary

We characterised the interpretation of the regular logic symbols
according to Tarski’s semantics in terms of the following categorical
properties of the contravariant power set functor P:

1. The functor P factors through InfSL (∧ and T );
2. The functor P has the left adjoints to the inverse images along

the product projcections (∃).
3. The functor P has the left adjoints to the inverse images along

the diagonals (=).

But then we do not really need P. We only need a functor enojoying
the same categorical properties as P.



How to abstract and isolate this role: doctrines.



Doctrines of posets

A doctrine is a functor P : Cop −→ Pos, where C is a category with
finite products, and Pos is the category of posets. The functors Pf ,
where f is an arrow of C, are usually called pullback functors (as an
abstraction of the following example), re-indexing functors (as an
abstraction of some syntax) or inverse image functors (as an
abstraction of the power set functor).

We think of the base category C of a doctrine as a category of contexts
where, for every object A of C, we have a poset P (A) = (P (A),⊢) of
predicates in context A.



Doctrines of posets

Example
Let C be a category with finite limits. The functor:

SubC : Cop −→ Pos

assigning to an object A in C the poset SubC(A) of subobjects of A
and such that for an arrow:

B
f // A

the morphism SubC(f) : SubC(A) −→ SubC(B) is given by pulling a
subobject back along f , is a doctrine.



Primary, existential and elementary doctrines

A doctrine P : Cop −→ Pos is:
1. primary if P factors through InfSL;
2. existential if, for every A1 and A2 in C and every projection
πi : A1 ×A2 −→ Ai, i = 1, 2, the functor:

Pπi : P (Ai) −→ P (A1 ×A2)

has a left adjoint ∃πi ;
3. elementary if, for every A in C , the functor:

P∆ : P (A×A) −→ P (A)

has a left adjoint =A.

We understand that a primary existential and elementary doctrine is
what we need in order to define a generalised Tarski’s semantics and
allow generalised models of a regular theory.



Let P : Cop −→ Pos be a primary existential and elementary doctrine.

An L-structure M in P is given by: an object AM of C for any sort A
of L, an arrow fM : AM

1 × ...×AM
n → BM of C for any function

symbol f : A1, ..., An → B of L, and an element
RM ∈ P (AM

1 × ...×AM
n ) for any relation symbol R : A1, ..., An of L.

Given an L-structure M in P , we can interpret L-terms and
L-formulas in M formally as we did for the ordinary Tarski’s
semantics, taking advantage of its categorical characterisation. Hence,
terms t : A in context Γ are interpreted as arrows:

tM : ΓM → AM

of C.

Let us go through the details for the formulas.



Interpretation of formulas in M

▶ If A is any sort, then ⊤M := ⊤A ∈ P (AM ).
▶ If t1, t2 : A are L-terms in context Γ, then:

(t1 = t2)
M := P⟨tM1 ,tM2 ⟩((=A)(⊤A)) ∈ P (ΓM ).

▶ If R : A1, A2, ..., An is a relation symbol and t1 : A1 t2 : A2 ...
tn : An are L-terms in context Γ, then:

R(t1, ..., tn)
M := P⟨tA1 ,...,tAn ⟩(R

M ) ∈ P (ΓM ).

▶ If ϕ and ψ are formulas in context Γ, then:

(ϕ ∧ ψ)M := ϕM ∧P (ΓM ) ψ
M ∈ P (ΓM ).

▶ If ϕ is a formula in context A×B, then:

((∃y : A)ϕ)M := ∃π(ϕM ) ∈ P (AM )

where π is the projection A×B → A.



Soundness and completeness

Finally, we say that M models an L-sequent ϕ ⊢Γ ψ if ϕM ≤ ψM in
P (ΓM ). We say that M is a model of an L-theory T if M models all
the sequents of T .

Theorem
This generalised Tarski’s semantics is sound and complete.

In other words, this doctrine-valued semantics manages to restore the
completeness property also for the fragments of classic first-order logic
(e.g. the regular one that we considered during these slides).



To deepen the notion of a doctrine

1969. Lawvere. Adjointness in foundations.
1970. Lawvere. Equality in hyperdoctrines and comprehension
schema as an adjoint functor.
2019. Trotta. Existential completion and pseudo-distributive laws:
an algebraic approach to the completion of doctrines.



Bonus: the existential
and the universal completions.



We saw that primary existential and elementary doctrines define a
notion of semantics for regular logic.

In general, depending on the categorical structure available in a given
doctrine, one can define models of different fragments of first-order
and higher-order logic.

As it might be expected, the current trend among scholars of doctrine
theory is to determine whether it is possible to freely add a given
piece of structure (which allows one to interpret a given piece of logic)
to a given doctrine.

Category theoretically, such a construction, called completion,
amounts to build a 2-left adjoint functor to the 2-inclusion of the
doctrines with that piece of structure into the ones that do not
necessarily have it. Once this is done, one can try determining
whether the given piece is a property or simple structure of a
doctrine, by looking at the associated monad.

In this last section, we provide two instances of completion, namely
the existential and the universal completions. Secondly, we provide
some references to deepen the study of the subject of doctrine
completions.



Existential and universal completions
Let P be a doctrine Cop −→ Pos.

The existential completion P ∃ : Cop −→ Pos of P is a doctrine such
that, for every object A of C, the poset P ∃(A) is defined as follows:
▶ Objects. Triples (A,B, α), where A and B are objects of C and
α ∈ P (A×B).

▶ Order. (A,B, α) ≤ (A,C, β) if there exists an arrow:

f : A×B −→ C

of C such that α ≤ P⟨πA,f⟩β where πA : A×B −→ A is the
product projection.

Whenever g : A −→ C is an arrow of C, the functor
P ∃
g : P ∃(C) −→ P ∃(A) sends an object (C,D, γ) of P ∃(C) to the

object (A,D,P⟨gπA,πD⟩γ) of P ∃(A).

One can show that P ∃ is a doctrine (exercise). The logical intuition is
that an element (A,B, α) of the fibre P ∃(A) represents a predicate
(∃b : B)α(a, b).



Existential and universal completions

The universal completion P ∀ : Cop −→ Pos of P is a doctrine such
that, for every object A of C, the poset P ∀(A) is defined as follows:
▶ Objects. Triples (A,B, α), where A and B are objects of C and
α ∈ P (A×B).

▶ Order. (A,B, α) ≤ (A,C, β) if there exists an arrow
g : A× C −→ B of C such that:

P⟨πA,g⟩(α) ≤ β

where πA : A× C −→ A is the product projection.

Whenever f : A −→ C is an arrow of C, the functor
P ∀
f : P ∀(C) −→ P ∀(A) is defined as for the existential completion.



Existential and universal completions

▶ Whenever P : Cop −→ Pos is a doctrine, it is the case that
P ∀ ∼= (−)op((−)opP )ex.

▶ The existential (resp. universal) completion produces existential
(resp. universal) doctrines i.e. doctrines with left (resp. right)
adjoints to the inverse image functors along the product
projections.

▶ There is a 2-category of doctrines.
▶ It restricts to a 2-category of the existential ones and to a

2-category of the universal ones.
▶ The existential and universal completions are 2-left and 2-right

adjoint to the respective forgetful functor.
▶ An existential (resp. universal) doctrine is an instance of

existential (resp. universal) completion if and only if it has
enough ∃-free objects (resp. ∀-free objects).



Preservation of logical structures

The following preservation result holds:

Proposition
Let P : Cop −→ Pos be a primary doctrine (i.e. P factors through the
category InfSL). Then the existential doctrine P ∃ : Cop −→ Pos is
primary as well.

and, by the result P ∀ ∼= (−)op((−)opP )ex, the dual result for the
universal completion holds as well:

Proposition
Let P : Cop −→ Pos be a co-primary doctrine (i.e. P factors through
the category SupSL). Then the universal doctrine P ∀ : Cop −→ Pos
is co-primary as well.



Preservation of logical structures
Definition
If C is distributive, a lat-doctrine is a doctrine P : Cop −→ Pos that
factors through the category Lat of lattices (i.e. the finitely complete
and finitely cocomplete posets) and finite sup&inf-preserving maps
(i.e. finite limit and finite colimit preserving functors).

Theorem
Let P : Cop −→ Pos be a lat-doctrine such that the images through P
of the injections jA : A −→ A+B have left adjoints ∃jA . Then the
following properties hold.

1. The doctrine P ∃ is a lat-doctrine.
2. Suppose that there is an arrow c : 1 −→ C for every non-initial

object C of C ( C has points).
Then the images through P ∃ of the injections jA have left
adjoints ∃∃jA .

3. Suppose that C has points and that the images through P of the
injections jA have right adjoints ∀jA .
Then the images through P ∃ of the injections jA have right
adjoints ∀∃jA .



Preservation of logical structures

Proof.
1. Whenever (A,B, α) and (A,C, β) are two elements of P ∃(A), it is

the case that:

(A,B, α) ∨ (A,C, β) := (A,B + C,Pθ−1(∃jA×B
α ∨ ∃jA×C

β))

is their coproduct.
2. Let (A+B,C, α) ∈ P ∃(A+B) and let (A,D, δ) ∈ P ∃(A). We

define ∃∃jA(A,D, δ) to be the object:

(A+B,D,Pθ−1∃jA×D
δ)

being θ the isomorphism (A×D) + (B ×D)→ (A+B)×D and
jA×D the injection A×D → (A×D) + (B ×D).

3. Analogously.



Preservation of logical structures

By the result P ∀ ∼= (−)op((−)opP )ex, the dual result for the universal
competion holds:

Theorem
Let P : Cop −→ Pos be a lat-doctrine such that the images through P
of the injections jA : A −→ A+B have right adjoints ∀jA . Then the
following properties hold.

1. The doctrine P ∀ is a lat-doctrine.
2. Suppose that C has points.

Then the images through P ∀ of the injections jA have right
adjoints ∀∀jA .

3. Suppose that C has points and that the images through P of the
injections jA have left adjoints ∃jA .
Then the images through P ∀ of the injections jA have left
adjoints ∃∀jA .



2011. Hofstra. The dialectica monad and its cousins.

contains the following result:

Theorem
Let P : Cop −→ Pos be a universal doctrine and suppose that C has
exponents. Then P ∃ : Cop −→ Pos is existential and universal, i.e.
the existential completion preserves the universal structure.

Proof.
Let A1, A2 be objects of C, and let prA1

: A1 ×A2 −→ A1 be the first
projection. Let ∀∃prA1

: P ∃(A1 ×A2) −→ P ∃(A1) be defined by:

(A1 ×A2, B, α) 7→ (A1, B
A2 ,∀⟨pr1,pr3⟩P⟨pr1,pr2,ev⟨pr2,pr3⟩⟩α)

where pri are the projections from A1 ×A2 ×BA2 and ev is the
evaluation map A2 ×BA2 → B.
The intuition is that the right adjoints act by mapping:

∃b : Bα(a1, a2, b) 7→ ∃f : BA2∀a2 : A2α(a1, a2, f(a2)).



How to combine our results

Hence we deduce the following:

Theorem
Let P : Cop −→ Pos be a lat-doctrine such that:
▶ the category C has points;
▶ the category C has exponents;
▶ the images PjA of the injections jA : A −→ A+B have left and

right adjoints ∃jA ⊣ PjA ⊣ ∀jA .

Then (P ∀)
∃
: Cop // Lat is an existential and universal

lat-doctrine and the images (P ∀)
∃
jA

of the injection jA have left and
right adjoints:

(∃∀)∃jA ⊣ (P ∀)
∃
jA
⊣ (∀∀)∃jA .



Other results

▶ The 2-monad associated to the existential (resp. universal)
completion is lax-idempotent (resp. colax-idempotent). Hence, it
is property-like, i.e. having existential (resp. universal)
quantifiers is a property, not just a structure, of a theory.

▶ Some relevant choice rules and principles are enjoyed by the
doctrines that happen to be existential, universal, or existential
& universal completions. E.g. the rule of choice; the
counterexample property; the principle of skolemisation; the
principle of the prenex normal form.

▶ If A is a complete distributive lattice and A is a supercoherent
suplattice whose subset B of supercompact elements of A is a
supercocoherent inflattice, then the presheaf over Set represented
by A is the existential completion of the universal completion of
the presheaf over Set represented by the subset of B of
supercocompact elements of B.
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