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Introduction

This essay is mostly about four notions: the notion of (symmetric) monoidal structure over
a category (together with the related notion of (symmetric) monoidal property of a functor),
the notion of cobordism (and the consequent notion of category of cobordisms), the notion of
topological quantum field theory (that provides an instance of symmetric monoidal functor)
and the notion of Frobenius algebra. In our formulation a monoidal category is nothing
but a monoid-object in the category of the categories and the functors between them. We
briefly discuss this notion in Section 1. In this section we also present other basic concepts,
related to the ones of monoidal category and monoidal functor, that we will need in the other
sections to talk about the categories of cobordisms and in order to present the definition of
n-dimensional TQFT w.r.t. a given field and for a given positive integer n.

In Section 2 we discuss the notion of n-dimensional cobordism (for a given positive integer
n) and we show how the equivalence classes of n-dimensional cobordisms (modulo a pre-
cise equivalence relation) can be seen as the arrows of a category (called the n-dimensional
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cobordism category) whose objects are the (n − 1)-dimensional oriented compact smooth
manifolds without boundary. After that, we enumerate a list of basic facts about the cobor-
dism categories and we show how they are endowed with a symmetric monoidal structure.
Finally we define the TQFTs of a given dimension n (for a given positive integer n) w.r.t.
a given field K as the K-linear representations of the n-dimensional cobordism category.

The aim of this essay is to describe the bidimensional TQFTs. In order to do this, in
Section 3 we present and prove a monoidal presentation of the bidimensional cobordism
category 2Cob. A monoidal presentation is made of a collection of arrows of 2Cob together
with a collection of equalities only involving the symmetric monoidal categorical structure
of 2Cob, in such a way that the whole information about the symmetric monoidal cate-
gorical structure of 2Cob can be deduced by these two collections. In fact we require the
collection of arrows to be such that every other arrow can be obtained by applying the
symmetric monoidal categorical structure of 2Cob finitely many times on this collection,
and the collection of equalities to be such that any other equality only involving the sym-
metric monoidal categorical structure can be deduced by them. As we are interested in the
description of the bidimensional TQFTs and as these are symmetric monoidal functors from
2Cob and therefore preserve the isomorphisms, it is enough to determine a presentation of
a skeleton of 2Cob.

As every arrow of such a skeleton is obtained by its categorical and symmetric monoidal
structures and by the arrows of the determined presentation (and as a symmetric monoidal
functor, like for instance a TQFT, preserves both the categorical and the symmetric monoi-
dal structures), the behaviour of a bidimensional TQFT is determined by the values that
it assumes on these arrows. Moreover, the equalities of the presentation provide a set
of relations between these values. In Section 4 we show that these values in K-Vect
assumed by a given TQFT (restricted to the given skeleton of 2Cob) together with this
set of relations can be equivalently summarised in a particular structure made of a K-
linear space together with four K-linear maps satisfying certain properties only involving
the symmetric monoidal and categorical structures of K-Vect. A subsection of Section 4 is
devoted to prove that such a structure is a commutative Frobenius K-algebra and, viceversa,
that every commutative Frobenius K-algebra can be obtained from a bidimensional TQFT
by applying this procedure. Moreover, in the ending part of Section 4 we reinforce this
result by proving that it is the case that the category of the bidimensional TQFTs (w.r.t.
the field K) (together with a natural choice of arrows between them) is equivalent to the
category of the commutative Frobenius K-algebras (again, together with a natural choice
of arrows between them). Finally, we observe that one may generalise this result to any
symmetric monoidal category in place of K-Vect.

The Appendix is made of four parts: the first one presents the formal definition of
the notion of classic model of a given first-order theory; the second one briefly illustrates
some categorical notation widely used during the essay; the third one enumerates the basic
category-theoretic notions appearing through the sections; the fourth one briefly explains
an uncommon set-theoretic notation that is used in a couple of arguments.

Many thanks to Vittorio C., Lorenzo Q. and Alessio R. for their physical remarks about
the categorical and monoidal approach to the definition of TQFT. Many thanks to Leo Lev
L. for his bibliographical suggestions. Many thanks to Albachiara C., Mattea F., Federico
F. and Enrico S. for some enlightening discussions about differential topology.
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1 Monoidal Categories

We begin this section by introducing the notion of monoidal category, which is fundamental
in order to present the formulation of a TQFT that we will be concerned with. In the
literature there exist quite different versions of this notion, some of them weaker than the
others (one can see [1, 2] to have a complete overview of them). However, the version that
we will be concerned with is not the weakest one. Hence we do not need to present the
theory of monoidal categories in the highest degree of generality.

Whenever we are given a first-order language (that is, a set of function-symbols, each
of them with a given arity, and of relation-symbols, again with their arity), we say that a
(classic) first-order structure for this language is just a set with an auto-function of a given
arity for every function-symbol (in the given language) of that arity, and a relation of a
given arity for every relation-symbol (in the given language) of that arity. For instance, if
the given language is L := {f, g, c, R}, where f is a binary function-symbol, g is a 1-ary
function-symbol, c is a 0-ary function-symbol (that is, a constant-symbol) and R is a binary
relation-symbol, then an L-(classic) first-order structure is a set X with the following data:
a function f ′ : X ×X → X, a function g′ : X → X, a constant c′ : 1 = {0} → X (that is, an
element c′ ∈ X) and a relation R′ ⊆ X ×X (see Appendix 1.).

Moreover, if T is a first-order theory in the given language (that is, a set of first-order
formulas -without free variables- only concerning the usual logic symbology, the function-
symbols and the relation-symbols of that language), we say that a structure for this language
is a classic model of T if this structure verifies (see Appendix 1. for a formal definition of
this notion) all the properties contained in T . Let us present a couple of instances of this
notion:

1. Let L := {R}, where R is a binary relation-symbol. Let T be the set whose elements
are (∀x)(xRx), (∀x∀y)(xRy ∧ yRx =⇒ x = y) and (∀x∀y∀z)(xRy ∧ yRz =⇒ xRz).
Then T is the so-called theory of posets. According to the given definition, an L-
structure (X,R′) -remind that X is a set and R′ ⊆ X × X- is a model of T if and
only if it verifies the elements of T , that is, if it is a poset. In other words, the classic
models of the theory of posets are precisely the posets.

2. Let L := {f, c}, where f is a binary function-symbol and c is a 0-ary function-symbol.
Let T be the theory of monoids, that is, the elements of T are (∀x∀y∀z)(f(f(x, y), z) =
f(x, f(y, z))) and (∀x)(f(x, c) = x = f(c, x)). As before, a set X with a binary
function h : X ×X → X and a constant e ∈ X constitutes a model of T if and only if
it verifies these two axioms, that is, if it is a monoid. Again, we saw that the classic
models of the theory of monoids are precisely the monoids.

For a more detailed explanation of these concepts, see Appendix 1.. In its categorical
environment, logic arises from the observation that models of a given first-order theory
may be defined in an arbitrary (sufficiently rich) category, not necessarily Set, the category
whose objects are the sets and whose morphisms are the functions between them. The classic
models of a given first-order theory turn out to be its models (according to the generalised
notion of model that we are presenting) in the event that the chosen category is Set. Let
us explain this phenomenon through an instance of it.

Let us consider the language L = {f, c} of the second example and the theory T of
monoids. The properties of T that an L-structure (X,h, e) needs to verify in order to be a
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monoid can be equivalently formulated by requiring that the following diagrams:

X ×X ×X X ×X X × 1 X 1×X

X ×X X X ×X X X ×X

1X×h

h×1X

h 1X×e

〈1X ,!〉 〈!,1X〉

1X e×1X

h h h

commute (if some notation of the objects and the arrows of these diagrams is not clear, see
Appedix 2.). This characterisation constitutes a category-theoretic definition of the notion
of monoid, as it only talks about objects of Set (namely the sets 1, X and products of them)
and arrows of Set (the functions h : X × X → X and e : 1 → X and products of them),
without mentioning elements of sets. Hence we can use it to express what a monoid-object in
a category C with finite products (that is, a model of the theory of monoids in the category
C) is. It is just an object X of C together with two morphisms h : X×X → X and e : 1→ X
of C such that the previous diagrams commute. In particular, it is the case that the monoids
are precisely the monoid-objects in Set, that is, the models of the theory of monoids in
Set. As we saw that the monoids are exactly the classic models of the theory of monoids,
we concude that the classic models of the theory of monoids are precisely the models of the
theory of monoids in Set. Actually, this result holds for any first-order theory.

Now we can give the following:

Definition 1.1. A monoidal category is just a monoid-object in the category of categories,
that is, a model of the theory of monoids in the category of categories.

According to Definition 2.1, a monoidal category is a category C together with a functor
⊗ : C × C → C and a a functor η : 1 → C, being 1 the terminal category (for the definition
of terminal object of a category, see Appendix 2.), such that the following diagrams:

C× C× C C× C C× 1 C 1× C

C× C C C× C C C× C

1C×⊗

⊗×1C

⊗ 1C×η

〈1C,!〉 〈!,1C〉

1C η×1C

⊗ ⊗ ⊗

commute, being ! the unique functor C → 1 (whose existence and whose uniqueness are
guaranteed by the terminality of the category 1). Actually, the notion of monoidal category
that we are working with is just a particular case of the one that usually appears in the
literature (see [1]). Here a monoidal category is a category C together with a functor
⊗ : C× C→ C, a functor η : 1→ C and three natural isomorphisms (see Appendix 3.):

α : (C× C× C C× C C) ∼= (C× C× C C× C C)

β : (C C× 1 C× C C) ∼= (C C)

γ : (C 1× C C× C C) ∼= (C C)

⊗×1C ⊗ 1C×⊗ ⊗

〈1C,!〉 1C×η ⊗ 1C

〈!,1C〉 η×1C ⊗ 1C

such that the following diagrams:

((A⊗B)⊗ C)⊗D (A⊗B)⊗ (C ⊗D)

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

α(A⊗B,C,D)

⊗◦(α×11C
)(A,B,C,D) α(A,B,C⊗D)

α(A,B⊗C,D) ⊗◦(11C
×α)(A,B,C,D)
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A⊗ (η(∗)⊗B) (A⊗ η(∗))⊗B

A⊗B
⊗◦(11C

×γ)(A,B)

α(A,η(∗),B)

⊗◦(β×11C
)(A,B)

commute for every choice of the objects A,B,C,D in C, being ∗ the unique object of 1.
The natural isomorphism α constitutes a weaker notion of associativity of the operation

⊗. Anologously, the natural isomorphisms β and γ should be considered as a weaker way of
expressing that η(∗) is a neutral element w.r.t. the operation ⊗. The commutativity of these
two diagrams of natural transformations expresses that a priori different applications of the
properties represented by α, β and γ are actually the same ones. Of course, if we require that
α, β and γ are identities, then the commutativities of the diagrams are vacuously satisfied
and we come back to the “stronger” notion of monoidal category that we are involved with.
Actually, a theorem states that every “weak” monoidal category is equivalent to a “strong”
monoidal category (Definition 1.1) through a functor that preserves the monoidal structure
(see [2] - Section XI.3; here “strong” monoidal categories verifying Definition 1.1 are called
strict). This result allows us to only consider strong monoidal categories, that is, to always
assume that the isos α, β and γ are identities. This is why we reserve the notation of
monoidal category for these ones, in line with Definition 1.1.

We conclude this section by introducing some fundamental terminology and presenting
some observations regarding it.

Definition 1.2. Let (C,⊗, η) be a monoidal category. Let us assume that there is a natural
isomorphism σ : ⊗ → ⊗◦ (π2×π1), being π1 and π2 the usual functors C×C→ C exhibiting
C × C as a product of C with itself (hence π2 × π1 is the functor sending a morphism
(f, f ′) : (C,C ′) → (D,D′) of C × C to the morphism (f ′, f) : (C ′, C) → (D′, D)). Then we
say that (C,⊗, η, σ) is a symmetric monoidal category.

Example 1.3 (Symmetric monoidal structure over K-Vect). Let K be a field and let us
consider the category K-Vect whose objects are the K-linear spaces and whose arrows are
the K-linear maps between them. Let ⊗ be the functor K-Vect×K-Vect→ K-Vect that
sends a morphism (f, f ′) : (V, V ′) → (W,W ′) of K-Vect × K-Vect to f ⊗ f ′ : V ⊗ V ′ →
W ⊗W ′. Let K be the functor 1 → K-Vect such that ∗ 7→ K (here K is considered as a
K-linear space over itself). Let σ : ⊗ → ⊗◦ (π2×π1) be the natural isomorphism such that,
for every choice of K-linear spaces V and W , it is the case that σ(V,W ) is the unique linear
isomorphism V ⊗W →W ⊗ V such that σ(V,W )(v ⊗w) = w⊗ v for every v ∈ V and every
w ∈W . Then (K-Vect,⊗,K, σ) is a symmetric monoidal category.

Remark 1.4. In Example 1.3 we are implicitly meaning that (U ⊗V )⊗W = U ⊗ (V ⊗W )
and that U ⊗ K = K = K ⊗ U for every choice of objects U , V and W in K-Vect.
Actually one could say that there are just isomorphisms (U ⊗ V ) ⊗ W ∼= U ⊗ (V ⊗ W )
and U ⊗ K ∼= K ∼= K ⊗ U natural in U , V and W (it depends on how they intend a linear
space to be), so that K-Vect is a monoidal category in the weaker sense. Anyway, as
these isomorphisms are natural and unique, we may identify the left and the right member
of everyone of them (this corresponds to considering a quotient of the given category) and
come back to the official version of K-Vect of Example 1.3. This is precisely an instance
of the main argument needed to prove that every “weak” monoidal category is equivalent
to a “strong” monoidal category.

Definition 1.5. Let (C,⊗, η) and (D,⊗′, ξ) be monoidal categories and let F be a functor
C → D. Let us assume that there are a natural transformation F2 : ⊗′ ◦ (F × F ) → F ◦ ⊗
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and a natural transformation F0 : ξ → F ◦ η. Then we say that the triple (F, F2, F0) is a
weak monoidal functor from (C,⊗, η) to (D,⊗′, ξ).

If the natural transformations F2 and F0 are identities, that is, ⊗′ ◦ (F × F ) = F ◦ ⊗
and ξ = F ◦ η, then we say that F is a monoidal functor from (C,⊗, η) to (D,⊗′, ξ).

Let us assume that σ and τ are natural isomorphisms ⊗ → ⊗ ◦ (π2 × π1) and ⊗′ →
⊗′ ◦ (π2×π1). In other words, let us assume that (C,⊗, η, σ) and (D,⊗′, ξ, τ) are symmetric
monoidal categories. Let us assume that F is a monoidal functor between (C,⊗, η) and
(D,⊗′, ξ). Moreover, let us assume that F ◦ σ = τ ◦ F , that is, for every choice of object C
and C ′ of C, it is the case that Fσ(C,C′) = τ(FC,FC′). Then we say that F is a symmetric
monoidal functor from (C,⊗, η, σ) to (D,⊗′, ξ, τ).

Definition 1.6. Let (C,⊗, η) and (D,⊗′, ξ) be monoidal categories and let F,G : C → D

be monoidal functors between them. Let α be a natural transformation F → G such

that (Fη(∗)
αη(∗)−−−→ Gη(∗)) = (ξ(∗) 1ξ(∗)−−−→ ξ(∗)) and (F (C ⊗ C ′)

αC⊗C′−−−−→ G(C ⊗ C ′)) =

(FC ⊗′ FC ′ αC⊗
′αC′−−−−−−→ GC ⊗′ GC ′) for every choice of objects C and C ′ of C. Then we say

that α is a monoidal natural transformation from F to G.

Remark 1.7. As usual there is a category, denoted as MonCat [SymMonCat respec-
tively], whose objects are the monoidal categories [symmetric monoidal cateogories respec-
tively] and whose arrows are the monoidal functors [symmetric monoidal functors respec-
tively] between them. Moreover, whenever (C,⊗, η[, σ]) and (D,⊗′, ξ[, τ ]) are monoidal
categories [symmetric monoidal cateogories respectively] it is the case that the class:

MonCat((C,⊗, η), (D,⊗′, ξ)) [SymMonCat((C,⊗, η, σ), (D,⊗′, ξ, τ)) respectively]

of the arrows (C,⊗, η[, σ]) → (D,⊗′, ξ[, τ ]), that is, the monoidal functors [symmetric
monoidal functors respectively] from (C,⊗, η[, σ]) to (D,⊗′, ξ[, τ ]) is a category as well:
its arrows are the monoidal natural transformations between them. Therefore MonCat
[SymMonCat] is endowed with a structure of 2-category.

Let K be a field and let V be a K-linear space. We recall that a K-linear representation
of a group G on V is just a group homomorphism f : G → Aut(V ), that is, a monoid
homomorphism f : G → K-Vect(V, V ), since a monoid homomorphism sends invertible
elements to invertible elements. Analogously, a K-linear representation of a monoid M on
V is a homomorphism f : M → K(V, V ).

We recall that a monoid M is a small category with one object • (and viceversa). The
arrows • → • are the elements of M and the composition is the associative operation of M .
Hence the identity arrow • → • is the neutral element of M . The monoid M is a group
precisely when all the arrows of the corresponding categorical structure are isomorphisms,
that is, when all the elements of M are invertible (as usual). Now, with this formulation a
K-linear representation of M is just a functor f : M → K-Vect. Indeed, if f is a functor
M → K-Vect and V := f•, then fm ∈ K-Vect(V, V ) for every m ∈ M , that is, f is
a map M → K-Vect(V, V ). Moreover, as f is a functor, it is the case that f sends the
neutral element of M to 1V and that f(mn) = f(m) ◦ f(n) for every m,n ∈ M . Hence
f is indeed a monoid homomorphism M → K-Vect(V, V ) i.e. a K-linear representation
of M on V . Viceversa, if f is a K-linear representation of M on V , then f is a functor
M → K-Vect sending the unique object • of M into the object V of K-Vect. Indeed
f(m) ∈ K-Vect(V, V ) for every m ∈ M . Moreover, being a monoid homomorphism, f
sends the neutral element of M (i.e. the identity arrow 1•) to the one of K-Vect(V, V )
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(i.e. the identity arrow 1V ). Moreover, being a monoid homomorphism, f commutes with
the operations of the monoids M and K-Vect(V, V ), that is, the relation f converts the
composition of the category M into the one of K-Vect. Hence f is a functor M → K-Vect.
Hence we proved that:

Fact 1.8. Whenever M is a monoid (or a group), the linear representations of M are
precisely the functors M → K-Vect.

Digression. As Fact 1.8 suggests, we may also consider arrows between two different K-
linear representations f, g : M → K-Vect of a given monoid (or group) M . Obviously
these should be the natural transfomations f → g. As the unique object of M is •, a
natural transfomation f → g is nothing but an arrow α : V := f• → g• =: W of K-Vect
(that is, a K-linear map α : V → W ) such that, for every element m ∈ M , it is the case
that α ◦ fm = gm ◦ α. Hence up to now we have given an explicit description of the
category Cat(M,K-Vect), whose objects are the functors M → K-Vect i.e. the K-linear
representations of M and whose arrows are the natural transformations between them.

We may also generalise the notion of representation by considering representations of M
in other categories. For instance, if we consider the category Set instead of K-Vect, we
obtain the category Cat(M,Set) whose objects are the representations of M in a set i.e.
the left M -actions.

Finally we generalise the notion of representation of a monoid (group) to an arbitrary
symmetric monoidal category:

Definition 1.9. Let (C,⊗, η, τ) be a symmetric monoidal category and let K be a field. A
K-linear representation of (C,⊗, η, τ) is a symmetric monoidal functor:

(C,⊗, η, τ)→ (K-Vect,⊗,K, σ).

The category whose objects are the K-linear representations of (C,⊗, η, τ) and whose arrows
are the monoidal natural transformations between them, i.e. the category:

SymMonCat((C,⊗, η, τ), (K-Vect,⊗,K, σ)),

is indicated as K-linRep(C,⊗, η, τ) and is called category of the K-linear representation of
(C,⊗, η, τ).
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2 Cobordism Categories

Whenever X is a smooth compact n-dimensional manifold for some n ∈ N \ {0}, we denote
its boundary as ∂X with the induced structure that makes it a smooth compact (n − 1)-
dimensional manifold without boundary (see [3] - Section 2.3 or [4]). If X has an orientation,
then ∂X denotes its boundary with the induced orientation (see [3] - Section 2.11 or [4]).

Let n ∈ N \ {0}. If S and S′ are smooth compact (n− 1)-dimensional manifolds without
boundary, a cobordism of S and S′ is a smooth compact n-dimensional manifold M such
that ∂M = S tS′. If S and S′ have an orientation, we say that M is an oriented cobordism
from S to S′ if ∂M = S t S′, being S the manifold S with opposite orientation (we remind
that an orientable smooth compact manifold admits precisely two orientations; see [3] -
Section 2.11 or [4]). In this case, we also denote ∂MA := S and ∂MB := S′. Observe
that, given an oriented compact smooth n-dimensional manifold, there are a priori different
notions of ∂MA and ∂MB , depending on the choice of S and S′ such that ∂M = S t S′. In
order to avoid any ambiguity, we will only use this notation when the choice of S and S′ is
clear. Whenever M and M ′ are oriented cobordisms from S to S′, we say that M and M ′

are equivalent if and only if there is an orientation preserving diffeomorphism ϕ : M →M ′

commuting with the inclusions of S and S′ into M and M ′ respectively (we remind that the
inclusions S ↪→ ∂M (∂M ′) and S′ ↪→ ∂M (∂M ′) are orientation preserving smooth maps),
that is, ϕ is such that the following diagram:

∂MA M ∂MB

S S′

∂M ′A M ′ ∂M ′B

ϕ

commutes. This relation of equivalence between oriented cobordisms with same source and
target actually defines an equivalence relation.

A motivated generalisation of the notion of oriented cobordism will simplify some of the
following arguments. Let S and S′ be oriented smooth compact (n− 1)-dimensional mani-
folds without boundary and let M be an oriented smooth compact n-dimensional manifold.

Let us assume that there are two orientation preserving diffeomorphisms S
∼=−→ ∂MA and

S′
∼=−→ ∂MB and morevoer let us assume that ∂M = ∂MA t ∂MB . Then we say that the

triple (M,S
∼=−→ ∂MA, S

′ ∼=−→ ∂MB) is a generalised oriented cobordism from S to S′. Clearly
any oriented cobordism from S to S′ with the two identities S = ∂MA and S′ = ∂MB is
also a generalised oriented cobordism from S to S′. Viceversa, one can prove (see [7]) the
following:

Fact 2.1. Whenever (M,S
∼=−→ ∂MA, S

′ ∼=−→ ∂MB) is a generalised oriented cobordism from
S to S′, then there are an oriented cobordism M ′ from S to S′ and an orientation preserving
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diffeomorphism ϕ : M →M ′ such that the following diagram:

∂MA M ∂MB

S S′

∂M ′A M ′ ∂M ′B

ϕ

∼= ∼=

commutes.

As we are going to see, this fact motivates the generalisation.

Whenever (M,S
∼=−→ ∂MA, S

′ ∼=−→ ∂MB) and (M ′, S
∼=−→ ∂M ′A, S

′ ∼=−→ ∂M ′B) are gener-
alised oriented cobordisms form S to S′, we say that M and M ′ are equivalent if and only
if there is an orientation preserving diffeomorphism ϕ : M → M ′ such that the following
diagram:

∂MA M ∂MB

S S′

∂M ′A M ′ ∂M ′B

ϕ

∼=

∼=

∼=

∼=

commutes. Again, this relation of equivalence between generalised oriented cobordisms with
same source and target defines an equivalence relation. Moreover this equivalence relation
contains (i.e. extends) the previous one, that is, coincides with the previous one once re-
stricted to the class of the oriented cobordisms. The Fact 2.1 says that every generalised
oriented diffeomorphism is equivalent to an oriented cobordism. Hence it justifies the gen-
eralisation of the notions of oriented cobordisms and equivalence between them. We are
ready to present the definition of the so-called cobordism categories, that will constitute a
fundamental instance of the notion of monoidal category.

Let n ∈ N \ {0}. Let nCob be the category:

1. whose objects are the oriented smooth compact (n−1)-dimensional manifolds without
boundary;

2. (given two objects S and S′) whose morphisms S → S′ are the equivalence classes
of generalised oriented cobordisms from S to S′ (according to the previously defined
notion of equivalence between generalised oriented cobordisms with same source and
target);

3. (given two morphisms [M ] : S → S′ and [M ′] : S′ → S′′) whose notion of composition
[M ′] ◦ [M ] : S → S′′ is given by the class of cobordisms [M ′M ], whose representative
M ′M is the generalised oriented cobordism from S to S′′ given by the gluing of M
and M ′ through the orientation preserving diffeomorphism:

(S′
∼=−→ ∂M ′A) ◦ (S′

∼=−→ ∂MB)−1 : ∂MB

∼=−→ ∂M ′A;
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4. (given an object S) whose notion of identity morphism is given by the class 1S : S → S
represented by the cylinder S × [0, 1] with one of the two orientations (observe that
there is an orientation preserving diffeomorphism S × [0, 1] → S × [0, 1] commuting
with the inclusions).

One can verify that these data actually define a category. The categories nCob, for n ∈
N \ {0}, are called cobordism categories.

Remark 2.2. Let n ∈ N \ {0}. Then the functor t : nCob × nCob → nCob sending a
morphism ([M ], [M ′]) : (S, S′)→ (T, T ′) of nCob× nCob to the morphism [M tM ′] : S t
S′ → T t T ′ and the functor 1 → nCob such that ∗ 7→ ∅ (observe that the empty set is
an oriented smooth compact (n− 1)-dimensional manifold without boundary) constitute a
monoidal structure over nCob.

Observe that, in general, given two objects S, S′ of nCob, it is not the case that StS′ =
S′ t S. Indeed, this happens if and only if S = S′. That happens because, given two sets
A,B, then A t B := {(x, 1) : x ∈ A} ∪ {(x, 2) : x ∈ B}. Anyway, there is a bijection

τA,B : A t B
∼=−→ B t A such that τA,B(a, 1) = (a, 2) and τA,B(b, 2) = (b, 1) for every a ∈ A

and every b ∈ B. Clearly τS,S′ is also an orientation preserving isomorphism.

Basic facts about the cobordism categories

Let us present some basic properties of nCob.

Remark 2.3. As any representative (that is, a generalised oriented cobordism) of a mor-
phism in a cobordism category is equivalent to an oriented cobordism, it is the case that
such a morphism is also represented by an oriented cobordism. Therefore, whenever we con-
sider such a representative, without loss of generality we may assume it to be an oriented
cobordism (that is, the two order preserving diffeomorphisms constituting it are identities).
This is for instance what we do in the proof of Proposition 2.5.

Remark 2.4. Let n ∈ N. Observe that, since any object of nCob is assumed to be a
compact manifold, then its connected components need to be finitely many. The same holds
for any representative of a given morphism in nCob, as it is also required to be compact.

Proposition 2.5. Let S and T be objects of 1Cob. Let s+ ∈ N be the number of the
positively oriented connected components (i.e. points) of S, let s− ∈ N be the number of the
negatively oriented connected components (i.e. points) of S, let t+ ∈ N be the number of the
positively oriented connected components (i.e. points) of T and let t− ∈ N be the number
of the negatively oriented connected components (i.e. points) of T . Then there is an arrow
S → T of 1Cob if and only if s+ + t− = s− + t+.

Proof. Let us assume that there is an arrow [M ] : S → T . Then M is a (finite) disjoint union
of oriented circumferences and oriented segments. Let A be the set whose elements are the
oriented segments being connected components of M. Obviously ∂M is also the boundary of
the disjoint union of the elements of A, as a circumference has empty boundary. Hence, let
us consider the following partition of A: let A1 be the set whose elements are the elements
of A whose beginning point is a positively oriented point of S and whose ending point is a
positively oriented point of T ; let A2 be the set whose elements are the elements of A whose
beginning point is a negatively oriented point of T and whose ending point is a negatively
oriented point of S; let A3 be the set whose elements are the elements of A whose beginning
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point is a positively oriented point of S and whose ending point is a negatively oriented
point of S; let A4 be the set whose elements are the elements of A whose beginning point
is a negatively oriented point of T and whose ending point is a positively oriented point of
T .z Hence s+ = |A1| + |A3|, s− = |A2| + |A3|, t+ = |A1| + |A4| and t− = |A2| + |A4| and
therefore s+ + t− = |A| = s− + t+.

Viceversa, let us assume that s+ + t− = s− + t+. Without loss of generality, let us
assume that x := s+ − t+ = s− − t− ≥ 0. Let us consider an arbitrary partition of the
positively oriented points of S into a set S+

1 of cardinality s+ − x = t+ and a set S+
2 of

cardinality x. Ananogously, let us consider a partition of the negatively oriented points of
S into a set S−1 of cardinality s− − x = t− and a set S−2 of cardinality x. Finally, let T+

be the set of the positively oriented points of T and let T− be the set of its negatively
oriented points. Let us consider a bijection f : S+

1 → T+, a bijection g : S−1 → T− and a
bijection h : S+

2 → S−2 . For every (a, b) ∈ f ∪ g (if this notation is not immediately clear,
see Appendix 4.) let us consider an oriented segment whose boundary is at b and for every
(a, b) ∈ h let us consider an oriented segment whose boundary is a t b. The disjoint union
of these segments is therefore an oriented smooth compact 1-dimensional manifold whose
boundary is S t T . q.e.d.

Observe that Proposition 2.5 is enough to give an explicit description (a classification)
of the unidimensional TQFTs w.r.t. a given field (see Definition 2.11).

Proposition 2.6. For every choice of objects S and T of 2Cob there is an arrow S → T .
In particular, the category 2Cob is connected.

Proof. As S and T are oriented smooth compact 1-dimensional manifolds without boundary,
they are finite disjoint unions of oriented circumferences. Let us consider, for every connected
component of S, an oriented semisphere whose boundary is that connected component with
the opposite orientation. Moreover, let us consider, for every connected component of T ,
an oriented semisphere whose boundary is that connected component. The disjoint union
of these semispheres is therefore an oriented smooth compact 2-dimensional manifold whose
boundary is S t T . q.e.d.

Remark 2.7. Let S be an object of nCob, for some n ∈ N. As the cylinder CS := S× [0, 1]
with a given orientation is a representative of 1S and in particular its boundary is ∂CS =
S t S, actually it is a representative of different morphisms of nCob, depending on how we
interpret ∂CSA and ∂CSB . Considering ∂CSA := S and ∂CSB := S, we can as usual regard
CS as a representative of the morphism 1S : S → S. However if we consider ∂CSA := S t S
and ∂CSB := ∅, we see that CS is also a representative of a morphism S t S → ∅ that we
indicate as lU . Moreover, if ∂CSA := ∅ and ∂CSB := S t S, then we get a representative of
a morphism rU : ∅ → S t S.

Reminding that t is a functor, we get a morphism 1S t rU : S → S t S t S and a
morphism lU t 1S : S t S t S → S. Hence, a morphism (lU t 1S) ◦ (1S t rU) : S → S. By
the notion of composition of nCob, a representative of (lU t 1S) ◦ (1S t rU) is S × ([0, 1]t
[0′, 1′]t [0′′, 1′′]t [0′′′, 1′′′])/∼ where the equivalence relation ∼ is the smallest one such that
1 ∼ 0′, 1′ ∼ 0′′ and 1′′ ∼ 0′′′. Hence S × ([0, 1] t [0′, 1′] t [0′′, 1′′] t [0′′′, 1′′′])/∼ ∼= S × [0, 1]
and therefore (lU t 1S) ◦ (1S t rU) = 1S .

Proposition 2.8. Let n ∈ N and let [M ] : S → S′ be an isomorphism of nCob. Let us
assume that M is connected. Then S and S′ are connected as well.
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Proof. Let N be such that [N ] = [M ]−1 : S′ → S. Then [NM ] = 1S . Then there is a
diffeomorphism NM ∼= S × [0, 1]. As for every p ∈ S × [0, 1] there is p′ ∈ ∂(S × [0, 1])A = S
such that p and p′ are in the same connected component of S× [0, 1], this property must also
hold for the manifold NM . Hence, for every p ∈ NM there is p′ ∈ ∂(NM)A = ∂MA = S
such that p and p′ are in the same connected component of NM . Being M connected,
∂MA = S is contained in the unique connected component of M , hence all points of NM
need to be in the same connected component of NM , that is, NM is connected. Then
S × [0, 1] is connected and therefore S needs to be connected as well: if by contradiction
S = S1 tS2, being S1 and S2 closed and nonempty, then S = (S1× [0, 1])t (S2× [0, 1]) and
S1 × [0, 1] and S2 × [0, 1] are closed and nonempty. The same argument proves that S′ is
also connected. q.e.d.

Remark 2.9. Let us consider an order preserving diffeomorphism ϕ : S → S′ between
oriented compact smooth (n− 1)-dimensional manifolds without boundary. Let us consider
the manifold S′ × [0, 1] with an orientation and let us consider ∂(S′ × [0, 1])A := S′ and
∂(S′ × [0, 1])B := S′, so that S′ × [0, 1] is a representative of 1S′ . As there is an orientation
preserving diffeomorphism ϕ : S → S′, the triple:

(S′ × [0, 1], ϕ : S → S′ = ∂(S′ × [0, 1])A, S
′ = S′ = ∂(S′ × [0, 1])B)

is a representative of an arrow [Mϕ] : S → S′ of nCob. In other words (use Fact 2.1), there
are an oriented compact smooth n-dimensional manifold Mϕ and an orientation preserving

diffeomorphism f : Mϕ → S′ × [0, 1] such that ∂Mϕ
A = S, ∂Mϕ

B = S′, (Mϕ f−→ S′ × [0, 1]) ◦
(S ↪→ Mϕ) = (S

′
↪→ S′ × [0, 1]) ◦ (S

ϕ−→ S′) and (Mϕ f−→ S′ × [0, 1]) ◦ (S′ ↪→ Mϕ) = (S′ ↪→
S′ × [0, 1]). Observe that [Mϕ] is also represented by the triple:

(S × [0, 1], S = S = ∂(S × [0, 1])A, ϕ
−1 : S′ → S = ∂(S × [0, 1])B).

One can verify that this construction defines a functor [M−] from the groupoid of the ori-
ented compact smooth (n−1)-dimensional manifolds without boundary and the orientation
preserving diffeomorphisms to nCob, that is, [Mψ◦ϕ] = [Mψ] ◦ [Mϕ], for any composable
orientation preserving diffeomorphisms ϕ and ψ, and [M−] sends identity maps of given
oriented compact smooth (n− 1)-dimensional manifolds without boundary to their identity
morphisms in nCob. Hence in particular it is the case that Mϕ is an isomorphism of nCob,
whose inverse is Mϕ−1

.
Moreover, given two orientation preserving diffeomorphisms ϕ,ψ : S → S′, it is the case

that [Mϕ] = [Mψ] if and only if ϕ and ψ are smoothly homotopic, that is, there is a smooth
map h : S × [0, 1]→ S′ such that h(−, 0) = ϕ and h(−, 1) = ψ. Indeed, if such a homotopy
h exists, then the following diagram:

S S × [0, 1] S

S S′

S′ S′ × [0, 1] S′

〈h, id[0,1]◦π[0,1]〉

ψ

ϕ−1
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commutes. Viceversa, if such a diagram:

S S × [0, 1] S

S S′

S′ S′ × [0, 1] S′

Φ

ψ

ϕ−1

commutes for some orientation preserving diffeomorphism Φ, then h := πS′ ◦Φ is a smooth
homotopy ψ ' ϕ.

Therefore [M−] becomes a functor from the quotient groupoid whose objects are the
ones of nCob and whose arrows are the equivalence classes of smoothly homotopic diffeo-
morphisms between them to nCob.

Definition of TQFT

Remark 2.10 (Symmetric monoidal structure over nCob). Let n ∈ N \ {0} and let us
consider the monoidal category (nCob,t, ∅) of Remark 2.2. For every object (S, T ) of
nCob × nCob, we define τ(S,T ) to be the isomorphism S t T → T t S of nCob induced
by the orientation preserving diffeomorphism τS,T : S t T → T t S of Remark 2.2 through
the procedure inlustrated in Remark 2.9. In other words, it is the case that τ(S,T ) :=
[MτS,T ]. Actually the isomorphism τ(S,T ) is natural in (S, T ), that is, for every morphism
(f, g) : (S, T )→ (S′, T ′) of nCob× nCob, the following square:

S t T T t S

S′ t T ′ T ′ t S′

τ(S,T )

ftg gtf
τ(S′,T ′)

commutes. In other words, τ is a natural isomorphism t → t◦(π2×π1). Hence (nCob,t, ∅, τ)
is a symmetric monoidal category.

We are ready to give the following:

Definition 2.11 (TQFT w.r.t. K). Let n ∈ N \ {0} and let K be a field. Then an n-
dimensional topological quantum field theory (TQFT) w.r.t. K is a symmetric monoidal
functor (nCob,t, ∅, τ)→ (K-Vect,⊗,K, σ), that is, a K-linear representation of the sym-
metric monoidal category nCob.

We denote as ntQft(K) the category whose objects are the n-dimensional TQFTs
w.r.t. K and whose arrows are the monoidal natural transformations between them. In
other words:

ntQft(K) = K-linRep(nCob,t, ∅, τ)

= SymMonCat((nCob,t, ∅, τ), (K-Vect,⊗,K, σ))

(see Definition 1.9).

Proposition 2.12. Let n ∈ N \ {0} and let K be a field. Let F be an n-dimensional TQFT
w.r.t. K. Then for every object S of nCob it is the case that FS is a finite dimensional
K-linear space.
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Proof. Let S be an object of nCob and let us consider the corresponding arrows lU : StS →
∅ and rU : ∅ → S t S of Remark 2.7. We know that (lU t 1S) ◦ (1S t rU) = 1S . Being
F a symmetric monoidal functor (nCob,t, ∅, τ) → (K-Vect,⊗,K, σ), it preserves the
compositions and converts the applications of t into applications of ⊗. Hence, if f :=
F (lU) : FS ⊗ FS → F∅ = K and g := F (rU) : K = F∅ → FS ⊗ FS, it is the case that:

(FS
1FS−−→ FS) = (FS = FS ⊗K 1FS⊗g−−−−→ FS ⊗ FS ⊗ FS f⊗1FS−−−−→ K⊗ FS = FS),

that in particular implies that f and g are not null maps (otherwise 1FS would be the null
map FS → FS). Therefore there are k ∈ N \ {0} and xi ∈ FS \ {0} and yi ∈ FS \ {0} for

i ∈ {1, ..., k} such that g(1) =
∑k
i=1(xi ⊗ yi), being 1 the neutral element of K w.r.t. its

multiplication. Now, let y ∈ FS. Then:

y = 1FS(y) = (f ⊗ 1FS) ◦ (1FS ⊗ g)(y)

[FS = FS ⊗K] = (f ⊗ 1FS) ◦ (1FS ⊗ g)(y ⊗ 1)

= (f ⊗ 1FS)(y ⊗ g(1)) = (f ⊗ 1FS)(y ⊗
k∑
i=1

(xi ⊗ yi))

= (f ⊗ 1FS)(

k∑
i=1

(y ⊗ xi ⊗ yi)) =

k∑
i=1

(f ⊗ 1FS)(y ⊗ xi ⊗ yi)

=

k∑
i=1

(f(y ⊗ xi)⊗ yi) =

k∑
i=1

f(y ⊗ xi)(1⊗ yi)

[K⊗ FS = FS] =

k∑
i=1

f(y ⊗ xi)yi

and being y ∈ FS arbitrary, it is the case that {yi}ki=1 is a generating set of FS. Hence FS
is finite dimensional. q.e.d.

As expressed in the Introduction, our aim is to describe the 2-dimensional TQFTs w.r.t.
a given field K. We will also give an explicit description of 2tQft(K). Firstly, let us briefly
explain why a topological quantum field theory should be defined in such a way (according
to [6, 7, 9] - see [5] for further details). In our formulation if we assume the spacetime to be
n-dimensional, then the objects of nCob represent the space and the arrows between them
the space-time. An n-dimensional TQFT w.r.t. K is just a way to assign to any system,
i.e. to any object of nCob, a space of admissible states for the given system and to any
space-time between two systems, i.e. to any arrow of nCob, an operator representing the
time evolution between the spaces of the admissible states.

The fact that a TQFT is a functor (i.e. preserves compositions and identities) means
two things: the passage of time represented by a given class of cobordisms followed by
the passage of time represented by another class of cobordisms has, on the time evolution
between the spaces of the admissible states, the same consequences that the passage of
time represented by the composition of the two given classes of cobordisms has; the null
passage of time represented by an identity cobordism class (i.e. an identity arrow of nCob)
corresponds to a null time evolution of the space of the admissible states.

Finally the fact that a TQFT is monoidal turns into a fundamental principle of Quantum
Mechanics expressing that the space of the admissible states of a system made of two
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independent systems (i.e. the disjoint union of two objects of nCob) is the tensor product
of the corresponding spaces of the admissible states of the two independent systems that we
started from.

Before concluding this section, let us prove one result more:

Proposition 2.13. Let [T ] : X → Y be an isomorphism of nCob for some n ∈ N \ {0}and
let us assume that:

([T ] : X → Y ) = ([T ′] : X ′ → Y ′) t ([T ′′] : X ′′ → Y ′′)

for some morphisms [T ′] and [T ′′] of nCob. Then [T ′] and [T ′′] are isomorphisms as well.
In other words, the functor t : nCob× nCob→ nCob reflects the isomorphisms.

Proof. Let [S] : Y → X be such that [ST ] = 1X and [TS] = 1Y . Without loss of generality
let us assume that ST = X × [0, 1] = (X ′ × [0, 1]) t (X ′′ × [0, 1]) and TS = Y × [0, 1] =
(Y ′× [0, 1])t(Y ′′× [0, 1]). As T ′tT ′′ = T ⊆ ST = (X ′× [0, 1])t(X ′′× [0, 1]) and ∂T ′A = X ′

and ∂T ′′A = X ′′, it is the case that T ′ ⊆ X ′ × [0, 1] and T ′′ ⊆ X ′′ × [0, 1]. Analogously, as
T ′ t T ′′ = T ⊆ TS = (Y ′ × [0, 1])t (Y ′′ × [0, 1]) and ∂T ′B = Y ′ and ∂T ′′B = Y ′′ it is the case
that T ′ ⊆ Y ′ × [0, 1] and T ′′ ⊆ Y ′′ × [0, 1].

If X ′ = ∅ then T ′ ⊆ X ′ × [0, 1] = ∅, hence T ′ = ∅ and [T ′] is an isomorphism. Then
[T ′′] = [T ] is an isomorphism as well. The same holds if Y ′ = ∅. Analogously, if X ′′ = ∅
of Y ′′ = ∅ it is the case that T ′′ = ∅, hence [T ′′] is an isomorphism and [T ′] = [T ] is an
isomorphism as well.

Therefore we can assume X ′, Y ′, X ′′, Y ′′ 6= ∅, otherwise we are done. Then T ′ and T ′′

need to be nonempty, otherwise X ′, Y ′ = ∅ (if T ′ = ∅) and X ′′, Y ′′ = ∅ (if T ′′ = ∅).
As Y ′ 6= ∅ and Y ′′ 6= ∅ and as ∂SA = ∂(TS)A = ∂(Y × [0, 1])A = Y = Y ′ t Y ′′, it is the

case that S′ := S ∩ (Y ′ × [0, 1]) 6= ∅ and S′′ := S ∩ (Y ′′ × [0, 1]) 6= ∅. As S ⊆ Y × [0, 1], it is
the case that S = S′ t S′′. Hence Y ′ × [0, 1] t Y ′′ × [0, 1] = TS = T ′S′ t T ′′S′′ and, since
∂T ′B = Y ′ and ∂T ′′B = Y ′′, it must be the case that T ′S′ = Y ′× [0, 1] and T ′′S′′ = Y ′′× [0, 1].

In particular ∂S′A = ∂(T ′S′)A = Y ′ and ∂S′′A = ∂(T ′′S′′)A = Y ′′.
Analogously, as X ′ 6= ∅ and X ′′ 6= ∅ and as ∂SB = ∂(ST )B = ∂(X × [0, 1])A = X =

X ′ tX ′′, it is the case that Σ′ := S ∩ (X ′ × [0, 1]) 6= ∅ and Σ′′ := S ∩ (X ′′ × [0, 1]) 6= ∅. As
S ⊆ X× [0, 1], it is the case that S = Σ′tΣ′′. By contradiction, if S′ ⊆ Σ′′, that is, S′ = Σ′′

then S∩ (Y ′× [0, 1]) = S∩ (X ′′× [0, 1]). Hence X ′× [0, 1]tX ′′× [0, 1] = ST = Σ′T ′tΣ′′T ′′

and, since ∂T ′A = X ′ and ∂T ′′A = X ′′, it must be the case that Σ′T ′ = X ′ × [0, 1] and
Σ′′T ′′ = X ′′ × [0, 1]. In particular ∂Σ′B = ∂(Σ′T ′)B = Y ′ and ∂Σ′′B = ∂(Σ′′T ′′)B = Y ′′.

Either Σ′ = S′ or Σ′ = S′′. If by contradiction the latter holds, then ∂S′′B = ∂Σ′B = Y ′

and the equality T ′′S′′ = Y ′′× [0, 1] does not make sense, as the first member does not exist.
Then Σ′ = S′ and Σ′′ = S′′. This concludes that [S′] is the inverse of [T ′] and [S′′] is the
inverse of [T ′′]. q.e.d.
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3 An explicit description of 2Cob...

...in terms of (a class of) generators and (a class of) relations.

In order to give an explicit description of the 2-dimensional TQFTs, at first we need an
explicit description of their domain category 2Cob. A useful and exhaustive description of
a given category consists of a so-called presentation of it.

Let C be a category. Let S be a class of arrows of C such that every arrow of C is a (finite)
composition of arrows of S. Then we say that S is a generating class for C. Obviously such
a class S does not need to have the property that, whenever an arrow of C is a composition
of arrows of S, then this composition is unique. Whenever an arrow f of C is such that
f = h1 ◦ ... ◦ hn and f = k1 ◦ ... ◦ km for some n,m ∈ N and some arrows hi, ki of S, then
the equality h1 ◦ ... ◦ hn = k1 ◦ ... ◦ km is a relation for S. Let us assume that R is a class
of relations for S such that any given relation for S can be deduced by the elements of R.
Then we say that R is complete. Finally, a presentation of C is a couple (S,R), where S is
a generating class for C and R is a complete class of relations for S.

Hence the aim of this section is to find an opportune presentation of 2Cob. Actually,
as TQFT’s are functors from 2Cob and thus preserve isomorphisms, it is enough to find a
presentation of a skeleton (see Appendix 3.) of 2Cob, i.e. a full subcategory S of 2Cob
such that any two isomorphic objects of S are equal and such that every object of 2Cob is
isomorphic to an object of S (to say the latter property corresponds to saying that the fully
faithful embedding S ↪→ 2Cob is essentially surjective, i.e. an equivalence of categories).

We can also improve the notion of presentation for monoidal categories. Let (C,⊗, η)
be a monoidal category and let S be a class of arrows of C such that every arrow of C is a
(finite) iteration of compositions and ⊗-paralleling of arrows of S. Then we say that S is a
generating class for (C,⊗, η). Whenever for an arrow f of C there are two ways of writing
f as iteration of compositions and ⊗-paralleling of arrows of S, the equality of these two
iterations is a relation for S. Let us assume that R is a class of relations for S such that any
given relation for S can be deduced by the elements of R. Then we say that R is complete.
Finally:

Definition 3.1. A (monoidal) presentation of (C,⊗, η) is a couple (S,R), where S is a
generating class for (C,⊗, η) and R is a complete class of relations for S.

This section is devoted to the exhibition of a presentation of a skeleton of the symmetric
monoidal category (nCob,t, ∅, τ). At first we will need the following:

Theorem 3.2. Let S and T be objects of 2Cob. Then S and T are isomorphic (in 2Cob)
if and only if they have the same number of connected components.

whose proof is a consequence of the following Lemma 3.3. Indeed if S and T are isomor-
phic then, according to Lemma 3.3, they are orientation preservingly diffeomorphic and in
particular they have the same number of connected components. Viceversa, suppose that S
and T have the same number of connected components and consider an arbitrary bijection
f from the set of the connected components of S to the set of the connected components of
T . For every (a, b) ∈ f (if this notation is not immediately clear, see Appendix 4.) consider
an orientation preserving diffeomorphism g(a,b) : a→ b: it exists, as a and b are oriented cir-
cumferences. Then

⊔
(a,b)∈f

g(a,b) is an orientation preserving diffeomorphism S → T . Hence

S and T are isomorphic by Lemma 3.3. We only need to prove the quoted:
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Lemma 3.3. Two objects S and T of 2Cob are isomorphic (in 2Cob) if and only if there
is an orientation preserving diffeomorphism S → T .

Proof.
If. This is the content of Remark 2.9.
Only if. Let [M ] : S → T be an isomorphism of 2Cob. Again, as any two oriented

circumferences are orientation preservingly diffeomorphism and S and T are disjoint unions
of oriented circumferences, we only need to show that S and T have the same number of
connected components. We prove that for every n ∈ N it is the case that: (#(n)) if M has
n connected components, then S and T have the same number of connected components.
If n = 0 this is clear and if n = 1 this holds because of Proposition 2.8. Let us assume that
n ≥ 2 and that the property #(m) holds for every m ≤ n− 1. Then, if M has n connected
components, it is the case that M = M ′ tM ′′ for some manifolds M ′ and M ′′ (of the same
dimension of M) whose numbers of connected components are n′ and n′′ respectively and
n′, n′′ ≤ n− 1. Then:

([M ] : S → T ) = ([M ′] : ∂M ′A → ∂M ′B) t ([M ′′] : ∂M ′′A → ∂M ′′B)

where ∂M ′A t ∂M ′′A = S and ∂M ′B t ∂M ′′B = T . By Proposition 2.13 it is the case that [M ′]

and [M ′′] are isomorphisms. As n′, n′′ ≤ n−1, by inductive hypothesis ∂M ′A and ∂M ′B have

the same number of connected components and ∂M ′′A and ∂M ′′B have the same number of
connected components. Hence S and T have the same number of connected components as
well. Hence the property #(n) holds for every n ∈ N and we are done. q.e.d.

Let 1 be a connected object of 2Cob, that is, a circumference with a given orientation.
For every n ≥ 2, let n be the disjoint union of n copies of 1. Sometimes we will also denote
0 := ∅. Let S be the full subcategory of 2Cob whose object class is {∅,1,2, ...}. By Theorem
3.2, it is the case that S is a skeleton of 2Cob. Observe that S is closed under the application
of the functors t and ∅. Hence (S,t, ∅, τ) is again a symmetric monoidal category and we
can consider monoidal presentations of it.

Theorem 3.4. Let S be the class whose elements are the arrows represented by the following
oriented cobordisms:

lE 1 rE

lF T rF

between all the possibile objects of S. In detail: lE (respectively rE) is a representative of
the unique arrow ∅ → 1 (respectively 1 → ∅) whose representatives are connected; 1 is a
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representative of the identity 1 → 1; lF (respectively rF ) is a representative of the unique
arrow 1→ 2 (respectively 2→ 1) whose representatives are connected; T is a representative
of the arrow τ(1,1) : 2 = 1 t 1→ 1 t 1 = 2 defined in Remark 2.10 (hence their orientation
is determined, as 1 has a given orientation).

Then S is a generating class for (S,t, ∅, τ).

In order to prove Theorem 3.4, we need to show that we are able to build every arrow
of S, via (finite) composition and (finite) t-paralleling of the arrows [lE], [rE], [lF ], [rF ],
[1] and [T ] of S. By definition of 2Cob, two (generalised) oriented cobordisms with same
source and target represent the same arrow if and only if they are diffeomorphic through
an orientation preserving diffeomorphism commuting with the inclusions of the source and
the target into the given cobordisms. Hence, in order to conclude, for every arrow [M ] of
S, we need to build, using lE, rE, lF , rF , 1 and T , an oriented cobordism M ′ such that
M ′ and M are diffeomorphic through an orientation preserving diffeomorphism commuting
with the inclusions of the source and the target into M and M ′. From now on we wil call
right the orientation of 1 and opposite the one of 1.

Remark 3.5. A theorem (see [8] - Section IX.3) states that: any two oriented connected
compact bidimensional smooth manifolds are diffeomorphic if and only if they have the same
Euler characteristic, the same number of right oriented component and the same number of
opposite oriented components.

Let m,n ∈ N and let M,M ′ be two oriented connected compact bidimensional smooth
manifolds whose boundaries are mtn. Then, by this theorem, M and M ′ induce the same
morphism m → n of S if and only if they have the same Euler characteristic. As M and
N are oriented, they are homeomorphic to connected sums of toruses and hence their Euler
characteristics are 2− 2g(M)−m−n and 2− 2g(N)−m−n respectively, where g(M) and
g(N) are their genuses, that is, their numbers of holes. Hence M and M ′ induce the same
morphism m→ n of S if and only if they have the same number of holes.

Proof of Theorem 3.4. At first let us prove that we are able to build representatives of the
arrows of S whose representatives are connected. Let m,n ∈ N and let [M ] : m→ n be such
that M is connected. Let k := g(M). According to Remark 3.5, we only need to build an
oriented connected compact bidimensional smooth manifold M ′ whose boundary is m t n
(that is, a connected oriented cobordism form m to n) and whose number of holes is k.

Firstly we build a connected oriented cobordism A from m to 1. If m = 0 i.e. m = 0 = ∅,
then A := lE. If m > 0, then we parallel and glue (finitely many) copies of 1 and rF
(if we consider their classes, this corresponds to applying the functor t and composing
respectively) in order to get a connected oriented cobordism A from m to 1. Analogously
we build a connected oriented cobordism B from 1 to n. If n = 0, then B := rE, otherwise
we parallel and glue copies of 1 and lF .

If k = 0 we define M ′ := BA. This is a connected oriented cobordism from m to n
without holes. We are done. Otherwise, if k > 0, observe that (rF )(lF ) is a connected
oriented cobordism from 1 to 1 whose genus is 1. In other words (rF )(lF ) has one hole. Let
C1 := (rF )(lF ) and, for every h > 1, let Ch := (Ch−1)((rF )(lF )). Hence Ck is a connected
cobordism from 1 to 1 whose number of holes is k. Hence BCkA is a connected oriented
cobordism from m to n whose number of holes is k. Again we are done.

Secondly let us generalise the previous argument to arrows of S whose representatives
are disconnected. Let t ∈ N be such that t > 1 and let us assume that, for every arrow [X]
of S, if X has d ∈ N connected components and d < t then there is a representative of [X]
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obtained by gluing and paralleling lE, rE, lF , rF , 1 and T for finitely many times. Let us
assume that [M ] : m → n is an arrow of S such that M has t ∈ N connected components.
In order to conclude, we only need to prove that there is a representative of [M ] obtained
by gluing and paralleling lE, rE, lF , rF , 1 and T for finitely many times. Let X and Y
be such that M = X t Y . Of course it is not necessarily the case that [M ] = [X] t [Y ],
as it is not necessarily the case that ∂MA = ∂XA t ∂YA and ∂MB = ∂XB t ∂YB (remind
indeed that the order matters!). For instance it is not the case that [T ] = τ(1,1) = [1] t [1]
even if T = 1 t 1. Anyway we observe that the equality [T ] ◦ [T ] = [1] t [1] holds, since
[T ] ◦ [T ] = [TT ] = (1 t 1) × [0, 1] and (1 t 1) × [0, 1] = [1] t [1]. The point is that T
corresponds to a permutation of the cicumferences constituting 1 t 1

A cobordism A from m → m obtained by gluing and paralleling 1 and T (for finitely
many times) corresponds to a permutation of the m circumferences constituting the source
of M . Analogously, we can consider a permutation of the n circumferences constituting the
target of M by considering a cobordism B from n→ n obtained by gluing and paralleling 1
and T (for finitely many times). Moreover, as 1 and T represent involutions of S ([1]◦[1] = 11
and [T ] ◦ [T ] = 11t1), we can also construct representatives of the inverses of [A] and [B]
by gluing and paralleling 1 and T (for finitely many times). Let A′ be a representative
of [A]−1 obtained by gluing and paralleling lE, rE, lF , rF , 1 and T for finitely many
times. Let B′ be a representative of [B]−1 obtained by gluing and paralleling lE, rE,
lF , rF , 1 and T for finitely many times. Hence [M ] = [B′(BMA)A′]. Let X̃ and Ỹ
be such that BMA = X̃ t Ỹ and X̃ ⊇ X and Ỹ ⊇ Y . We pick A and B in such a
way that [BMA] = [X̃] t [Ỹ ] (such a choice of A and B exists, as every permutation
can be expressed through a cobordism as we saw before). Finally, as X̃ and Ỹ have less
then t connected components (BMA has exactly t connected components), by inductive
hypothesis it is the case that [X̃] and [Ỹ ] have representatives X ′ and Y ′ obtained by gluing
and paralleling lE, rE, lF , rF , 1 and T for finitely many times. Hence it is the case that
[M ] = [B′] ◦ [BMA] ◦ [A′] = [B′] ◦ ([X̃] t [Ỹ ]) ◦ [A′] = [B′] ◦ ([X ′] t [Y ′]) ◦ [A′] and then
B′(X ′ t Y ′)A′ is a representative of [M ]. As A′, B′, X ′, Y ′ are obtained by gluing and
paralleling lE, rE, lF , rF , 1 and T for finitely many times, we are done. q.e.d.

The class S of Theorem 3.4 is a generating class for (S,t, ∅, τ). In order to get a
presentation of (S,t, ∅, τ) we also need a complete class of relations for S, which is provided
by the following:

Theorem 3.6. The following equalities between arrows of S:

[lE]
α1= [1] ◦ [lE] [1]

β1
= [1] ◦ [1] [rE]

γ1
= [rE] ◦ [1]

[lF ]
α2= [lF ] ◦ [1] [T ]

β2
= [T ] ◦ ([1] t [1]) [rF ]

γ2
= [1] ◦ [rF ]

[lF ]
α3= ([1] t [1]) ◦ [lF ] [T ]

β3
= ([1] t [1]) ◦ [T ] [rF ]

γ3
= [rF ] ◦ ([1] t [1])

[lF ]
α4= [T ] ◦ [lF ] [1] t [1]

β4
= [T ] ◦ [T ] [rF ]

γ4
= [rF ] ◦ [T ]

[1]
δ1= [rF ] ◦ ([lE] t [1]) ([lF ] t [1]) ◦ [lF ]

ε1= ([1] t [lF ]) ◦ [lF ]

[1]
δ2= [rF ] ◦ ([1] t [lE]) [rF ] ◦ ([rF ] t [1])

ε2= [rF ] ◦ ([1] t [rF ])

[1]
δ3= ([rE] t [1]) ◦ [lF ] [lF ] ◦ [rF ]

ε3= ([1] t [rF ]) ◦ ([lF ] t [1])

[1]
δ4= ([1] t [rE]) ◦ [lF ] [lF ] ◦ [rF ]

ε4= ([rF ] t [1]) ◦ ([1] t [lF ])
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[T ] ◦ ([lE] t [1])
ζ1
= ([1] t [lE])

([rE] t [1]) ◦ [T ]
ζ2
= ([1] t [rE])

([rF ] t [1]) ◦ ([1] t [T ]) ◦ ([T ] t [1])
ζ3
= [T ] ◦ ([1] t [rF ])

([T ] t [1]) ◦ ([1] t [T ]) ◦ ([lF ] t [1])
ζ4
= ([1] t [lF ]) ◦ [T ]

([T ] t [1]) ◦ ([1] t [T ]) ◦ ([T ] t [1])
ζ5
= ([1] t [T ]) ◦ ([T ] t [1]) ◦ ([1] t [T ])

hold. Moreover, the class R whose elements are these equalities is a complete class of
relations for S.

Remark 3.7. Before the proof of Theorem 3.6 let us observe that, combining ζ3 and β4,

we get the relation ([1] t [rF ]) ◦ ([T ] t [1]) ◦ ([1] t [T ])
ζ′3= [T ] ◦ ([rF ] t [1]). In fact:

([1] t [rF ]) ◦ ([T ] t [1]) ◦ ([1] t [T ]) = (([1] ◦ [1]) t ([1] ◦ [rF ])) ◦ ([T ] t [1]) ◦ ([1] t [T ])

= ([1] t [1]) ◦ ([1] t [rF ]) ◦ ([T ] t [1]) ◦ ([1] t [T ])

= [T ] ◦ [T ] ◦ ([1] t [rF ]) ◦ ([T ] t [1]) ◦ ([1] t [T ])

= [T ] ◦ ([rF ] t [1]) ◦ ([1] t [T ]) ◦ ([T ] t [1])2 ◦ ([1] ◦ [T ])

= [T ] ◦ ([rF ] t [1]) ◦ ([1] t [1] t [1])

= [T ] ◦ ([rF ] t [1]),

where, apart from the functoriality and the associativity of t and the neutrality relations of
[1], we have just applied ζ3 and β4. Analogously, combining γ4 and β4, we get the relation

([1] t [T ]) ◦ ([T ] t [1]) ◦ ([1] t [lF ])
ζ′4= ([lF ] t [1]) ◦ [T ].

Proof of Theorem 3.6. In order to prove that all the equalities holds, for each one of them
we notice that the given representative on the left and the given representative on the right
are both connected, have the same source and the same target, and have the same genus (it
is always 0). Hence they induce the same arrow of S. Clearly these equalities are relations
for S, since they only involve finitely many compositions and t-parallelings of elements of
the class S.

Hence we are left to prove that the class R is complete. Let us assume that [M ] is an
arrow m→ n (for some m,n ∈ N) of S and that [M ] is equal to a given finite iteration I of
compositions and t-parallelings of the arrows of S. We are going to prove that, by applying
finitely many times the equalities of R, we are able to move from the given expression
of [M ] (the one provided by I) to a precise fundamental expression of [M ] (that we will
talk about later). If we manage to prove this main fact, then we are done, since this fact
implies in particular that any two expressions of [M ] as finite iterations of compositions and
t-parallelings of the elements of S are actually equal modulo the elements of R. Hence,
being [M ] an arbitrary arrow of S, we will have proven that any equality between two given
expressions of an arrow of S as finite iterations of compositions and t-parallelings of the
elements of S (that is, any relation for S) can be deduced from the elements of R. The
proof of the main fact is made of three steps:

(i) Firstly we assume that M is connected and that the iteration I does not involve the
usage of the arrow [T ].
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(ii) Secondly we generalise the argument to expressions I that may also involve the usage
of the arrow [T ]. This step is easily accomplished by proving that we can eliminate
the occurrences of [T ] through finitely many applications of the elements of R).

(iii) Finally we extend the argument to possibily disconnected manifolds M .

(i) The fundamental expression of [M ] is [BCkA], whose representative is the connected
oriented cobordism BCkA of the first part of the proof of Theorem 3.4, being k the number
of holes of M , i.e. its genus. Hence we are going to prove that [M ] = [BCkA] by only using
the elements of R.

At first we move all the [rF ]-pieces on the left (in order to form the A-part) as much
as we can, by following this procedure, until we cannot do anything anymore: if on the
left of a [rF ]-piece there is a [1]-piece, then we apply in sequence γ3 - β1 - γ3 - γ2, so that
the [rF ]-piece is moved to the left of the [1]-piece; if on the left of a [rF ]-piece there is
a [lE]-piece, then we apply in sequence γ3 - α1 - δ1 or γ3 - α1 - δ2, so that we eliminate
both the [rF ]-piece and the [lE]-piece and we get a [1]-piece (observe that through this
procedure we eliminate all the [lE]-pieces, as they can only be on the left of some [rF ],
being M connected); if on the left of a [rF ]-piece there is a [lF ]-piece glued through only
one circunference, then we apply in sequence: γ3 - α3 - β1 - β1 - γ3 - ε3 or γ3 - α3 - β1 -
β1 - γ3 - ε4, so that the [rF ]-piece is moved to the left of the [lF ]-piece; if on the left of a
[rF ]-piece there is a [lF ]-piece glued through both the circumferences or another [rF ]-piece,
then we do not do anything.

Secondly we move all the [lF ]-pieces on the right (in order to form the B-part) as much
as we can, by following this procedure, until we cannot do anything anymore: if on the
right of a [lF ]-piece there is a [1]-piece, then we apply in sequence α3 - β1 - α3 - α2, so that
the [lF ]-piece is moved to the right of the [1]-piece; if on the right of a [lF ]-piece there is a
[rE]-piece, then we apply in sequence α3 - γ1 - δ3 or α3 - γ1 - δ4, so that we eliminate both
the [lF ]-piece and the [rE]-piece and we get a [1]-piece (as before, observe that through this
procedure we eliminate all the [rE]-pieces, as they can only be on the right of some [lF ],
being M connected); if on the right of a [lF ]-piece there is a [rF ]-piece glued through only
one circunference, then (as before) we apply in sequence: γ3 - α3 - β1 - β1 - γ3 - ε3 or γ3 -
α3 - β1 - β1 - γ3 - ε4, so that the [lF ]-piece is moved to the right of the [rF ]-piece; if on the
right of a [lF ]-piece there is a [rF ]-piece glued through both the circumferences or another
[lF ]-piece, then we do not do anything.

Observe that these two procedures only take us finitely many applications of the elements
of R. In particular, they involve all of them but ε1, ε2, α4, β2, β3, β4, γ4 and ζi for
i ∈ {1, 2, 3, 4, 5}. As after every step we always get a representative of the same arrow of S
(and so, in particular, a compact oriented cobordism diffeomorphic to M), it is the case that
-even once the procedures are complete- the number of holes is always k and therefore in
the middle we must have a compact oriented cobordism C ′ made of finitely many [1]-pieces
and k-many [rF ] ◦ [lF ]-pieces. Hence, up to applying α1 and γ1 finitely many times in
order to eliminate the [1]-pieces between the k-many [rF ] ◦ [lF ]-pieces, we can assume that
C ′ = Ck. Moreover, up to applying ε2, β1 and γi for i ∈ {1, 2, 3} finitely many times, we
can assume that the compact oriented cobordism glued on the left of C ′ is A. Analogously,
up to applying ε1, β1 and αi for i ∈ {1, 2, 3} finitely many times, we can assume that the
compact oriented cobordism glued on the right of C ′ is B. Hence we conclude that the
equality [M ] = [BCkA] can actually be inferred by applying the elements of R finitely many
times.
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(ii) Observe that up to now we have not used the equalities α4, β2, β3, β4, γ4 and ζi for
i ∈ {1, 2, 3, 4, 5} of R, since they involve the arrow [T ] and in (i) we assumed the iteration I
not to involve it. Now, let us assume that in the given expression of [M ] as a finite iteration
of compositions and t-parallelings of elements of S there are exactly t ∈ N occurrences of the
arrow [T ], being t > 0. Moreover, let us assume that, whenever an expression of an arrow
of S through finitely many compositions and t-parallelings of elements of S contains d ∈ N
occurrences of [T ] and d < t, then it is the case that we can eliminate all the occurrences
of [T ] from this expression by applying the elements of R for finitely many times. We are
going to prove that the same holds for [M ]. Indeed, if we manage to prove this, then we are
done: we will have proven that, for every expression of an arrow of S through finitely many
compositions and t-parallelings of elements of S, it is the case that we can eliminate all
the occurrences of [T ] from this expression by applying the elements of R for finitely many
times. After that, we will be done by applying (i).

Let us consider a [T ]-piece appering in the expression of [M ]. Because of the inductive
hypothesis, we are done if we manage to eliminate the given [T ]-piece without adding any
other one. Up to applying α1, α2, α3, β1, β2, β3, γ1, γ2 and γ3 finitely many times, we can
assume that all the pieces parallel with the given [T ]-piece (if they exist) are just cilinders
(observe that this procedure does not modify the number of occurrences of the arrow [T ]
in the given expression of [M ] as a finite iteration of compositions and t-parallelings of
elements of S). Hence [T ] with its parallel pieces (it they exist) constitutes an arrow [C]
k→ k for some k ∈ N \ {0, 1}. Hence we get a decomposition of [M ] as [B] ◦ [C] ◦ [A], being
[A] an arrow m → k and being [B] an arrow k → n. Observe that the expressions of [A]
and [B] contain less then t occurrences of [T ].

If A is connected then, because of the inductive hypothesis and because of (i), we can
assume that the expression of [A] is the fundamental one. Then up to applying ε1, β1 and αi
for i ∈ {1, 2, 3} finitely many times, we can assume that there is a [lF ]-piece of the expression
of [A] that is glued on the left of the given [T ]-piece through both the circumferences. By
applying α4, we eliminate the given [T ]-piece. We are done.

If B is connected then, because of the inductive hypothesis and because of (i), we can
assume that the expression of [B] is the fundamental one. Then up to applying ε2, β1

and γi for i ∈ {1, 2, 3} finitely many times, we can assume that there is a [rF ]-piece of
the expression of [A] that is glued on the right of the given [T ]-piece through both the
circumferences. By applying γ4, we eliminate the given [T ]-piece. Again, we are done.

Therefore, let us assume that both A and B are disconnected. Let A1 be the unique
connected component of A such that the codomain of [A1] contains the lower circumference
of the domain of the given [T ]-piece. Let A2 be the unique connected component of A
such that the codomain of [A2] contains the upper circumference of the domain of the given
[T ]-piece. Let B1 be the unique connected component of B such that the domain of [B1]
contains the lower circumference of the codomain of the given [T ]-piece. Let B2 be the unique
connected component of B such that the domain of [B2] contains the upper circumference
of the codomain of the given [T ]-piece. Observe that there must exist at least one between:
a cylinder parallel to [T ] connecting [A1] and [B1]; a cylinder parallel to [T ] connecting
[A2] and [B2] (or both). Indeed, if this was not the case, then [M ] would be disconnected.
Without loss of generality, let us assume that there is a cylinder [1] parallel to [T ] connecting
[A1] and [B1]. As A1 and B1 are connected and the expressions of [A1] and [B1] contain
less then t occurences of [T ], because of the inductive hypothesis and because of (i), we can
assume that the expressions of [A1] and [B1] are the fundamental ones. Therefore, up to
applying ε1, ε2, βi, αi and γi for i ∈ {1, 2, 3} finitely many times, we can assume that there

22



are a [lF ]-piece and a [1]′-piece appering in [A1] and a [rF ]-piece and a [1]′′-piece appearing
in [B1] such that [T ] fits into a morphism ([rF ] t [1]′′) ◦ ([1] t [T ]) ◦ ([lF ] t [1]′) appearing
in the expression of [M ]. Hence we are done if we prove that we can eliminate [T ] from the
expression ([rF ] t [1]) ◦ ([1] t [T ]) ◦ ([lF ] t [1]) by just applying the elements of R finitely
many time. In fact:

([rF ] t [1]) ◦ ([1] t [T ]) ◦ ([lF ] t [1]) = ([rF ] t [1]) ◦ ([1] t [T ]) ◦ (([T ] ◦ [lF ]) t ([1] ◦ [1]))

= ([rF ] t [1]) ◦ ([1] t [T ]) ◦ ([T ] t [1]) ◦ ([lF ] t [1])

= [T ] ◦ ([1] t [rF ]) ◦ ([lF ] ◦ [1])

= [T ] ◦ [lF ] ◦ [rF ]

= [lF ] ◦ [rF ]

where: the first equality is a consequence of α4 and β1, the second one of the functoriality
of t, the third one of ζ3, the fourth one of ε3 and the last one of α4. Observe that a path
involving ζ4 instead of ζ3 and γ4 instead of α4 is also possible. We are done.

If there was not a cylinder [1] parallel to [T ] connecting [A1] and [B1], that is, there is a
cylinder [1] parallel to [T ] connecting [A2] and [B2], then during this last argument we are
required to prove that ([1] t [rF ]) ◦ ([T ] t [1]) ◦ ([1] t [lF ]) = ([lF ] ◦ [rF ]) by only applying
the elements of R finitely many times. We just apply ζ ′3 (see Remark 3.7) instead of ζ3 and
ε4 instead of ε3. Again, observe that a path involving ζ ′4 instead of ζ ′3 and γ4 instead of α4

is also possible. Again, we are done.

(iii) Observe that up to now we have not used the equalities ζ1, ζ2 and ζ5. Let us consider
a given expression of [M ] and the equality [M ] = [B′] ◦ [BMA] ◦ [A′] of the end of the
Proof of Theorem 3.4, being A and B the permutation cobordisms (only made of [T ]-pieces
and [1]-pieces). The equalities [A] ◦ [A′] = [1] and [B′] ◦ [B] = [1] can be deduced by only
applying finitely many times the elements β1, β2, β3, β4 and γ5 of R. Then, as [BMA] (by
induction) is expressed as a finite t-paralleling of a finite family F of arrows of S whose
representatives are connected, by (ii) it is the case that the expressions of everyone of these
arrows can be moved to the respective fundamental ones through finitely many applications
of the elements of R. Up to change the order of the elements of F in the final expression of
[M ] (and up to add/eliminate [1]-pieces), this generalised fundamental expression is unique.
Moreover these changes only involve the permutation parts [A], [B], [A′] and [B′] and can be
achieved by only applying the relations of R involving the arrow [T ]. Since the given initial
expression of [M ] is arbitrary, we conclude that we can always move it to the generalised
fundamental expression through finitely many applications of the elements of R. Hence we
are done. q.e.d.

We conclude this section by summarising the results of Theorem 3.4 and Theorem 3.6
into the following:

Corollary 3.8 (Monoidal presentation of (S,t, ∅, τ)). The couple (S,R) is a monoidal
presentation of the symmetric monoidal category (S,t, ∅, τ), being S the skeleton of 2Cob
spanned by the object class {∅,1,2, ...}, being S the generating class for (S,t, ∅, τ) of Theo-
rem 3.4 and being R the complete class of relations for S of Theorem 3.6.
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4 Bidimensional TQFTs & Frobenius Algebras

From now on let K be a field. As anticipated, we would like to give an explicit description
of the 2-dimensional topological quantum field theories w.r.t. K. At first we need to specify
which kind of “explicit description” we are looking for. Usually in mathematics the most
desired one is a so-called classification theorem. Whenever we talk about a classification of
a class A of objects, we implicitly mean that we have a notion of morphism between them
turning A into a category. Hence to classify A corresponds to saying which are the objects of
A up to the notion of isomorphism of its categorical structure (in detail this also corresponds
to partitioning the class A into the equivalence classes of the mutually isomorphic object
and then picking a representative for every one of them).

For instance, when we talk about the classification of the 2-dimensional compact con-
nected topological manifolds we are implicitly considering the natural notion of continuous
map as the appropriate notion of arrow turning the class of the 2-dimensional compact
connected topological manifolds into a category. Hence in this case, to classify the 2-
dimensional compact connected topological manifolds means to list all the 2-dimensional
compact connected topological manifolds up to homeomorphism (the corresponding notion
of isomorphism), that is, to pick a representative for every equivalence class of mutually
homeomorphic 2-dimensional compact connected topological manifolds. A choice of these
representatives is the following: a sphere, a torus, a projective plane and all the finite
connected sums of them.

Coming back to our main enviroment, we remind that we already have a notion of
arrow between two given 2-dimensional TQFTs w.r.t. K, as these are the objects of the
category 2tQft(K) = K-linRep(2Cob,t, ∅, τ), whose arrows are the monoidal natural
transformations between them. Hence instinctively our aim should be to classify the 2-
dimensional TQFTs up to monoidal natural isomorphism.

Remark 4.1 (A classification is nothing but a skeleton [and an equivalence of categories is
nothing but a “generalised classification”]). Observe that the classification of a given class
of objects up to a given notion of arrow between these objects is nothing but the exhibition
of a skeleton (see Appendix 3.) of the corresponding categorical structure. We remind that
a skeleton of a given category C is a full subcategory S of C such that the inclusion functor
S ↪→ C is essentially surjective (hence an equivalence of categories) and such that every two
isomorphic object of S are equal. As mentioned, to prove a classification theorem for a given
category is equivalent to exhibiting a skeleton of that category. In other words, if A is a
category, then a subclass B of A constitutes a classification of A precisely when the full
subcategory of A spanned by B is a skeleton of A. For instance if A is the category of the
2-dimensional compact connected topological manifolds and the continuous maps between
them, then the full subcategory of A spanned by a sphere, a torus, a projective plane and
all their finite connected sums constitutes a skeleton of A. Another instance was given in
the previous section: the full subcategory S of 2Cob spanned by ∅, a given circumference
1 and the finite disjoint unions of copies of 1 is a skeleton of 2Cob. Hence this also means
that the set {∅,1,2, ...} classifies 2Cob.

In Remark 4.1 we observed that a classification of a given category A is essentially an
equivalence of categories A ' B such that B is a skeletal category, that is, for every two
objects B,C of B, if B ∼= C then B = C. However, in our research of an “explicit descrip-
tion” of 2tQft(K) we may also content ourselves with determining a generic equivalence
of categories 2tQft(K) ' B, without necessarily requiring B to be a skeletal category.
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Of course we would like B to be simpler then 2Cob(K), so that we have a more concrete
intuition of the behaviour of the TQFTs. We start by studying how the individual TQFTs
look like. The monoidal presentation (S,R) of their domain (S,t, ∅, τ) of Corollary 3.8 helps
us characterise them.

Let F be a 2-dimensional topological quantum field theory w.r.t. K, that is, a symmetric
monoidal functor (2Cob,t, ∅, τ)→ (K-Vect,⊗,K, σ). As F is a functor 2Cob→ K-Vect,
it preserves the isomorphisms. Therefore we may also assume that F assumes the same value
on isomorphic objects and arrows of 2Cob. This corresponds to restricting F to the skeleton
S of 2Cob (see Section 3). Hence let us assume that F is a symmetric monoidal functor
(S,t, ∅, τ) → (K-Vect,⊗,K, σ). Actually we will see that the description of this kind of
functors is sufficient in order to describe the category 2tQft(K). As F is monoidal, it is the
case that F∅ = K. Let V := F1, which is a finite dimensional K-linear space by Proposition
2.12. As F is monoidal and as n is the disjoint union of n copies of 1, for every n ∈ N, it is
the case that Fn = ⊗ni=1F1 = ⊗ni=1V .

The class S of Theorem 3.4 is a generating class for (S,t, ∅, τ). Then we only need to
specify the values of F on the arrows represented by the elements of S. Let:

(α : V → V ) := F ([1] : 1→ 1)

(β : V ⊗ V → V ⊗ V ) := F ([T ] : 2→ 2)

(f : K→ V ) := F ([lE] : ∅ → 1)

(g : V → K) := F ([rE] : 1→ ∅)
(h : V → V ⊗ V ) := F ([lF ] : 1→ 2)

(i : V ⊗ V → V ) := F ([rF ] : 2→ 1).

The class R of Theorem 3.6 is a complete class of relations for S, that is, it contains
the whole information regarding the categorical and the symmetric monoidal structure of
(S,t, ∅, τ). The elements of R are relations only involving the arrows represented by the
elements of S, compositions and disjoint unions of them. As F is a monoidal functor, it
needs to preserve the composition and to convert the disjoint union of two arrows of S into
the tensor product of two arrows of K-Vect. Hence the elements of R become relations
involving the K-linear maps 1V , σ(V,V ), f , g, h and i, compositions and tensor products
of them. The relations α1, α2, α3, β1, β2, β3, γ1, γ2 and γ3 in S characterise that [1]
is the identity arrow 11 : 1 → 1 and F preserves the identity arrows, as it is a functor.
Hence it is the case that α = F [1] = F11 = 1V . Analogously, the relations β4, ζ1, ζ2, ζ3,
ζ4 and ζ5 characterise that [T ] is τ(1,1). As F is a monoidal functor, it is the case that
F [T ] = Fτ(1,1) = σ(V,V ) i.e. β = σ(V,V ). Hence we are left with the relations α4, γ4, δ1, δ2,
δ3, δ4, ε1, ε2, ε3 and ε4. For instance, applying F to the members of ε4, we get the relation
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F [lF ] ◦F [rF ] = (F [rF ]⊗F [1]) ◦ (F [1]⊗F [lF ]) i.e. h ◦ i = (i⊗ 1V ) ◦ (1V ⊗h). Analogously:

h
(a)
= σ(V,V ) ◦ h i

(a′)
= i ◦ σ(V,V )

1V
(b)
= i ◦ (f ⊗ 1V ) (h⊗ 1V ) ◦ h (d)

= (1V ⊗ h) ◦ h

1V
(b′)
= i ◦ (1V ⊗ f) i ◦ (i⊗ 1V )

(d′)
= i ◦ (1V ⊗ i)

1V
(c)
= (g ⊗ 1V ) ◦ h h ◦ i (e)

= (1V ⊗ i) ◦ (h⊗ 1V )

1V
(c′)
= (1V ⊗ g) ◦ h h ◦ i (e′)

= (i⊗ 1V ) ◦ (1V ⊗ h)

are the relations on the arrows f , g, h and i provided by α4, γ4, δ1, δ2, δ3, δ4, ε1, ε2, ε3 and
ε4. Let Φ be the set whose elements are these relations. We proved the following:

Proposition 4.2. Let F be a symmetric monoidal functor (S,t, ∅, τ)→ (K-Vect,⊗,K, σ).
Let V := F1, f := F [lE], g := F [rE], h := F [lF ] and i := F [rF ]. Then V is a finite
dimensional K-linear space and the 5-tuple (V, f, g, h, i) satisfies the elements of Φ.

Hence every symmetric monoidal functor (S,t, ∅, τ)→ (K-Vect,⊗,K, σ) defines a par-
ticular structure in the symmetric monoidal category (K-Vect,⊗,K, σ). We will recognise
this structure again at the ending part of the following subsection.

Frobenius algebras in K-Vect

We remind that a K-algebra is a couple (V, b) where V is a K-vector space and b is a K-
bilinear map V ×V → V . Moreover we say that (V, b) is a unital associative K-algebra when
b is associative and has a neutral element. Finally we remind that ϕ is a homomorphism
of unital associative K-algebras (V, b) → (V ′, b′) if ϕ is a K-linear map V → V ′ such that
ϕ ◦ b = b′ ◦ (ϕ×ϕ) and ϕ preserves the neutral element. A characterisation of these notions
is provided by the following:

Proposition 4.3 (“How to talk about K-algebras by only involving the symmetric monoidal
categorical structure of K-Vect”). A unital associative K-algebra is precisely a triple (V, f, i)
where V is a K-linear space and f and i are K-linear maps K→ V and V ⊗V → V respec-
tively such that the relations (b), (b′) and (d′) of the set Φ are satisfied.

Moreover, a homomorphism of unital associative K-algebras (V, f, i) → (V ′, f ′, i′) is
precisely a K-linear map ϕ : V → V ′ such that ϕ ◦ i = i′ ◦ (ϕ⊗ ϕ) and ϕ ◦ f = f ′.

Proof. Let V be a K-linear space and let us assume that there is a K-bilinear associative
map b : V × V → V with neutral element e. By the universal property of the couple
(V ⊗ V,⊗ : V × V → V ⊗ V ) (see Appendix 2.), there is unique an arrow i : V ⊗ V → V of
K-Vect such that i ◦⊗ = b. The associativity of b directly implies the property (d′), since:

(i ◦ (i⊗ 1V ))(x⊗ y ⊗ z) = i(i(x⊗ y)⊗ z)
[i ◦ ⊗ = b] = b(b(x, y), z)

[associativity of b] = b(x, b(y, z))

[i ◦ ⊗ = b] = i(x⊗ i(y ⊗ z))
= (i ◦ (1V ⊗ i))(x⊗ y ⊗ z).
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for every x, y, z ∈ V . Now, let f be the K-linear map K→ V such that f(λ) = λe for every
λ ∈ K. The neutrality of e w.r.t. b directly implies the property (b), since:

(i ◦ (f ⊗ 1V ))(x) = i((f ⊗ 1V )(x))

[V = K⊗ V ] = i((f ⊗ 1V )(1⊗ x)) = i(f(1)⊗ x)

= i(e⊗ x)

[i ◦ ⊗ = b] = b(e, x) = x

= 1V (x)

for every x ∈ V , being 1 the neutral element of K w.r.t. its multiplication. Analogously,
the neutrality of w.r.t. b directly implies the property (b′).

Viceversa, if there exist K-linear maps f and i as in the statement, one defines b :=

(V × V ⊗−→ V ⊗ V i−→ V ) (hence b is bilinear) and e := f(1) and directly verifies that the
property (d′) implies the associativity of b and that the properties (b) and (b′) imply the
neutrality of e w.r.t. b.

Let ϕ be a K-linear map V → V ′. If it is the case that ϕ ◦ b = b′ ◦ (ϕ × ϕ), then
(ϕ ◦ i)(x ⊗ y) = (ϕ ◦ b)(x, y) = (b′ ◦ (ϕ × ϕ))(x, y) = b′(ϕ(x), ϕ(y)) = i′(ϕ(x) ⊗ ϕ(y)) =
(i′ ◦ (ϕ⊗ϕ))(x⊗y) for every x, y ∈ V , hence ϕ◦ i = i′ ◦ (ϕ⊗ϕ). Moreover, if ϕ(e) = e′, then
(ϕ ◦ f)(λ) = ϕ(λe) = λϕ(e) = λe′ = f ′(λ) for every λ ∈ K, that is ϕ ◦ f = f ′. Viceversa, if
ϕ ◦ i = i′ ◦ (ϕ⊗ ϕ) and ϕ ◦ f = f ′ then one precomposes the members of the first equality
with ⊗ and computes the members of the second one on 1, to get directly the equalities
ϕ ◦ b = b′ ◦ (ϕ× ϕ) and ϕ(e) = e′. We are done. q.e.d.

This characterisation of the notion of unital associative K-algebra is useful because it
does not involve the obscure notion of bilinearity : the maps f and i are just K-linear, that is,
arrows of K-Vect. From a category-theoretic point of view, this is one of the most important
features enjoyed by the tensor product (see Appendix 2.): it converts K-multilinear maps
into K-linear ones. Hence the notion of unital associative K-algebra can be fully discussed
through the “language” of the symmetric monoidal category (K-Vect,⊗,K, σ).

Remark 4.4. Let (V, f, i) be a K-algebra.
Let g be a K-linear map V → K. Let η be the unique K-linear map V ⊗ V → K such

that η(x⊗ y) = g(i(x⊗ y)) for every x, y ∈ V . Then η is associative i.e. it is the case that
η(i(x⊗ y)⊗ z) = η(x⊗ i(y ⊗ z)) for every x, y, z ∈ V . Indeed, if x, y, z ∈ V , then:

η(i(x⊗ y)⊗ z) = g(i(i(x⊗ y)⊗ z)) (d)
= g(i(x⊗ i(y ⊗ z))) = η(x⊗ i(y ⊗ z)).

Viceversa, if η is an associative K-linear map V ⊗V → K, that is, it holds that η(i(x⊗ y)⊗
z) = η(x⊗ i(y ⊗ z)) for every x, y, z ∈ V , then there is a K-linear map g : V → K such that
g(x) = η(f(1)⊗ x) = η(x⊗ f(1)) for every x ∈ V . Indeed, for every x, y ∈ V it is the case
that:

η(f(1)⊗ x)
(b′)
= η(f(1)⊗ i(x⊗ f(1))) = η(i(f(1)⊗ x)⊗ f(1))

(b)
= η(x⊗ f(1)).

These assignments g 7→ η and η 7→ g define a bijective correspondence between the set of
the K-linear maps V → K and the set of the associative K-linear maps V ⊗V → K. Indeed,
let us assume that g 7→ η and that η 7→ g′. Then:

g′(x) = η(f(1)⊗ x) = g(i(f(1)⊗ x))
(b)
= g(x)

27



for every x ∈ V , that is, g = g′. Viceversa, if η 7→ g and g 7→ η′, then:

η′(x⊗ y) = g(i(x⊗ y)) = η(f(1)⊗ i(x⊗ y)) = η(i(f(1)⊗ x)⊗ y)
(b)
= η(x⊗ y)

for every x, y ∈ V , that is, η = η′.

In order to prove Proposition 4.6 we need the following well-known:

Lemma 4.5. Let us consider the functor (∗) : K-finVect→ K-finVect such that:

(X
α−→ Y ) 7→ (Y ∗

α∗−−→ X∗)

for every K-linear map α, being α∗ the precomposition with α. Then (∗) is an anti-
equivalence of categories.

Proof. We prove that (∗) is its own pseudo-inverse, that is, that (∗) ◦ (∗) = 1K-finVect. Let
X be a finite dimensional K-linear space. Let FX be the K-linear map X → X∗∗ such
that, for every x ∈ X, it is the case that FX(x) is the K-linear map X∗ → K such that
(FX(x))(f) = f(x) for every f ∈ X∗. Let us assume that FX(x) is the null element of
X∗∗ for some x ∈ X. Then f(x) = (FX(x))(f) = 0 for every f ∈ X∗. In particular, if
we consider a basis B of X, as the projections on the elements of B are elements of X∗,
it is the case that all the projections of x on the elements of B are zero i.e. x is the null
linear combination of the elements of B i.e. x is the null element of X. Then it is the
case that FX is injective and hence an isomorphism of K-linear spaces by the rank-nullity
theorem (remind that X∗ has the same dimension of X because X is a finite dimensional
vector space; in particular X∗∗ has the same dimension of X as well). Observe that X is
an arbitrary object of K-finVect. Moreover, it is the case that the following diagram:

X X∗∗

Y Y ∗∗

FX

α α∗∗

FY

commutes for every arrow α : X → Y of K-finVect. Indeed, if x ∈ X and f ∈ Y ∗, then:

((α∗∗ ◦ FX)(x))(f) = (α∗∗(FX(x)))(f) = (FX(x) ◦ α∗)(f)

= (FX(x))(α∗(f)) = (FX(x))(f ◦ α)

= f(α(x)) = (FY (α(x)))(f)

= ((FY ◦ α)(x))(f)

i.e. (α∗∗ ◦FX)(x) = (FY ◦α)(x), as f ∈ Y ∗ is arbitrary, i.e. α∗∗ ◦FX = FY ◦α, as x ∈ X is
arbitrary. Hence F is a natural isomorphism 1K-finVect → (∗)◦(∗) and we are done. q.e.d.

Proposition 4.6. Let (V, f, i) be a unital associative K-algebra and let us assume that V is
finite dimensional. Let g be a K-linear map V → K and let η be the corresponding associative
K-linear map V ⊗ V → K (see Remark 4.4). Then the following are equivalent:

(i) For every y ∈ V \ {0} there is x ∈ V such that g(i(x⊗ y)) 6= 0.

(ii) For every x ∈ V \ {0} there is y ∈ V such that g(i(x⊗ y)) 6= 0.
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(iii) For every y ∈ V \ {0} there is x ∈ V such that η(x⊗ y) 6= 0.

(iv) For every x ∈ V \ {0} there is y ∈ V such that η(x⊗ y) 6= 0.

Proof. The equivalences (i) ⇐⇒ (iii) and (ii) ⇐⇒ (iv) are immediate, as for every
x, y ∈ V it is the case that η(x ⊗ y) = g(i(x ⊗ y)). Hence we are done if we prove that
(iii) ⇐⇒ (iv).

Let us consider the K-linear map ηl : V → V ∗ such that, for every x ∈ V , it is the case
that ηl(x) is the K-linear map V → K such that (ηl(x))(y) = η(x ⊗ y) for every y ∈ V .
Analogously, let ηr be the K-linear map V → V ∗ such that, for every y ∈ V , it is the case
that ηr(y) is the K-linear map V → K such that (ηr(y))(x) = η(x ⊗ y) for every x ∈ V .
Observe that the statement (iii) is precisely the injectivity of ηr, because (iii) says that
ηr(y) ∈ V ∗ is nonzero whenever y ∈ V is nonzero. Analogously (iv) is the injectivity of
ηl. As V is finite dimensional, it is the case that V ∗ is finite dimensional as well and its
dimension is the one of V . Hence ηl, ηr : V → V ∗ are injective if and only is they are
isomorphisms of linear spaces, by the rank-nullity theorem. Therefore (iii) holds if and only
if ηr is an isomorphism and (iv) holds if and only if ηl is an isomorphism. Then we are done
it we prove that ηr is an isomorphism if and only if ηl is an isomorphism.

Let us consider the functor (∗) : K-finVect → K-finVect of Lemma 4.5. Since (∗) is
an equivalence of categories (as (∗)◦(∗) ∼= 1K-finVect), it is the case that ηl is an isomorphism
if and only if η∗l is an isomorphism. Hence we are done if we prove that ηr is an isomorphism
if and only if η∗l is an isomorphism. The following diagram:

V V ∗

V ∗∗

ηr

FV
η∗l

commutes, being FV the V -component of the natural isomorphism F of Lemma 4.5 (in
particular FV is an isomorphism of K-linear spaces). Indeed, whenever x, y ∈ V , it is the
case that:

((η∗l ◦ FV )(y))(x) = (η∗l (FV (y)))(x) = (FV (y) ◦ ηl)(x)

= (FV (y))(ηl(x)) = (ηl(x))(y)

= η(x⊗ y) = (ηr(y))(x)

i.e. (η∗l ◦ FV )(y) = ηr(y), being x ∈ V arbitrary, i.e. η∗l ◦ FV = ηr, being y ∈ V arbitrary.
Hence, being FV an isomorphism of K-linear spaces, it is the case that ηr is an isomorphism of
K-linear spaces if and only if η∗l is an isomorphism of K-linear spaces. We are done. q.e.d.

We are ready to give the fundamental:

Definition 4.7 (Frobenius K-algebra). Let (V, f, i) be a unital associative K-algebra and let
us assume that V is finite dimensional. A Frobenius K-algebra is a 4-tuple (V, f, g, i), where
g : V → K is a K-linear map satisfying (i) (and (ii)) of Proposition 4.6, or equivalently a
4-tuple (V, f, i, η), where η : V ⊗ V → K is an associative K-linear map satisfying (iii) (and
(iv)) of Proposition 4.6.

Now our aim is to characterise the notion of (commutative) Frobenius algebra in K-Vect
in such a way that we can talk about it by only involving the notions of K-linear space,
K-linear map, composition in K-Vect and tensor product of K-linear spaces. I.e. by only
involving the (symmetric) monoidal structure of (K-Vect,⊗,K, σ). We do this for two
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reasons: in order to prove that the commutative Frobenius K-algebras are precisely the
2-dimensional TQFTs w.r.t K; in order to be able to generalise the notion of (commutative)
Frobenius algebra to an arbitrary symmetric monoidal category.

We remind that a unital associative K-algebra (V, b, e) is commutative if the bilinear
map b : V × V → V is symmetric i.e. b(x, y) = b(y, x) for every x, y ∈ V . If we consider
the characterisation of the notion of unital associative K-algebra of Proposition 4.3, that
is, a triple (V, f, i) satisfying the elements (b), (b′) and (d) of the set Φ, then (V, f, i) is
commutative if and only if the property (a′) is also satisfied. Indeed, if b is symmetric, then
i(x⊗ y) = b(x, y) = b(y, x) = i(y⊗x) for every x, y ∈ V i.e. i(x⊗ y) = (i ◦σ(V,V ))(x⊗ y) for
every x, y ∈ V . Then (as usual) i(v) = (i ◦ σ(V,V ))(v) for every v ∈ V , that is, i = i ◦ σ(V,V ).
Viceversa, if (a′) holds then we get the symmetry of b by just precomposing both the
members with ⊗.

Definition 4.8. Let (V, f, g, i) be a Frobenius K-algebra. We say that it is commutative
if it is a commutative unital associative K-algebra (V, f, i), that is, if condition (a′) of Φ is
satisfied.

We also need to consider the dual version of the notion of unital associative K-algebra
in the category K-Vect:

Definition 4.9. Let V be a K-linear space. Let us assume that g and h are K-linear maps
V → K and V → V ⊗ V respectively such that the properties (c), (c′) and (d) of Φ are
satisfied. Then we say that the triple (V, g, h) is a counital coassociative K-coalgebra. We
say that it is cocommutative if (a) holds as well.

Moreover, we say that ϕ : (V, g, h) → (V ′, g′, h′) is a homomorphism of counital coas-
sociative K-coalgebras if ϕ is a K-linear map V → V ′ such that h′ ◦ ϕ = (ϕ ⊗ ϕ) ◦ h and
g′ ◦ ϕ = g.

Lemma 4.10. Let (V, f, i) be a unital associative K-algebra. Let η be an associative K-
linear map V ⊗ V → K. Then V is finite dimensional and the condition (iv) of Proposition
4.6 holds if and only if there is a K-linear map γ : K→ V ⊗ V such that:

(V = V ⊗K 1V ⊗γ−−−−→ V ⊗ V ⊗ V η⊗1V−−−−→ K⊗ V = V ) = (V
1V−−→ V ).

Analogously, V is finite dimensional and the condition (iii) holds if and only if there is a
K-linear map γ′ : K→ V ⊗ V such that:

(V = K⊗ V γ′⊗1V−−−−→ V ⊗ V ⊗ V 1V ⊗η−−−−→ V ⊗K = V ) = (V
1V−−→ V ).

Proof. We prove the first statement. Let us assume that such a γ exists. Then, as in the
proof of Proposition 2.12, there are k ∈ N \ {0} and yi, xi ∈ V \ {0} for i ∈ {1, ..., k} such

that γ(1) =
∑k
i=1(yi⊗xi), being 1 the neutral element of K w.r.t. its multiplication. Again,

as in the proof of Proposition 2.12, for every x ∈ V it is the case that x
♣
=

∑k
i=1 η(x⊗ yi)xi

and hence V is finite dimensional. Let us assume that ηl(x) ∈ V ∗ is the null element of V ∗

for some x ∈ V (see the proof of Proposition 4.6). Then in particular for every i ∈ {1, ..., k}
it is the case that η(x ⊗ yi) = (ηl(x))(yi) = 0. Then, according to the equality ♣, it is
the case that x is the null element of V . Hence ηl is injective, and this is equivalent to the
condition (iii) of Proposition 4.6 (see the proof of Proposition 4.6).

Viceversa let us assume that V is finite dimensional and that (iii) holds. Hence there is a
finite basis {xi}ki=1 of V and ηl is injective. Being ηl injective, it is the case that {ηl(xi)}ki=1
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is also linearly independent and this implies that there is a set {yi ∈ V \ {0}}ki=1 such that,
for every i, j ∈ {1, ..., k}, it is the case that (ηl(xi))(yj) = δi,j . Let γ be the unique K-linear

map K → V ⊗ V such that γ(1) =
∑k
i=1 yi ⊗ xi, being 1 the neutral element of K w.r.t.

its multiplication. It is the case that the equality (V = V ⊗ K 1V ⊗γ−−−−→ V ⊗ V ⊗ V η⊗1V−−−−→
K⊗ V = V ) = (V

1V−−→ V ) holds.
Analogously one can prove the second part of the statement. q.e.d.

Remark 4.11. Let (V, f, i) be a unital associative K-algebra and let η be an associative
K-linear map V ⊗V → K. By Proposition 4.6 it is the case that V is finite dimensional and
(iv) holds if and only if V is finite dimensiona and (iii) holds. Hence there is a K-linear map
γ as in Lemma 4.10 if and only if there is a K-linear map γ′ as in Lemma 4.10. Moreover

it is the case that γ and γ′ coincide: observe that K-linear map (K γ′⊗γ−−−→ V ⊗ V ⊗ V ⊗
V

1V ⊗η⊗1V−−−−−−→ V ⊗ V ) is both equal to (K γ′−→ V ⊗ V 1V ⊗1V ⊗γ−−−−−−−→ V ⊗ V ⊗ V ⊗ V 1V ⊗η⊗1V−−−−−−→
V ⊗ V ) = (K γ′−→ V ⊗ V 1V ⊗1V−−−−−→ V ⊗ V ) = (K γ′−→ V ⊗ V ) and to (K γ−→ V ⊗ V γ′⊗1V ⊗1V−−−−−−−→
V ⊗V ⊗V ⊗V 1V ⊗η⊗1V−−−−−−→ V ⊗V ) = (K γ′−→ V ⊗V 1V ⊗1V−−−−−→ V ⊗V ) = (K γ′−→ V ⊗V ) (remind
that in our convention K-Vect satisfies K⊗ V = V = V ⊗K).

Observe that this argument also implies that such a γ (or γ′) is unique. Hence we can
summarise what we know in the following:

Proposition 4.12. Let (V, f, i) be a unital associative K-algebra. Let g be a K-linear map
V → K and let η be the corresponding associative K-linear map V ⊗ V → K (see Remark
4.4). Then the following are equivalent:

1. The K-linear space V is finite dimensional and (one of) the equivalent conditions (i),
(ii), (iii) and (iv) of Proposition 4.6 hold(s).

2. There exists a K-linear map γ : K→ V ⊗V such that (one of) the equivalent conditions
1V = (η ⊗ 1V ) ◦ (1V ⊗ γ) and 1V = (1V ⊗ η) ◦ (γ ⊗ 1V ) hold(s).

3. There exists unique a K-linear map γ : K → V ⊗ V such that (one of) the equivalent
conditions 1V = (η ⊗ 1V ) ◦ (1V ⊗ γ) and 1V = (1V ⊗ η) ◦ (γ ⊗ 1V ) hold(s).

Proof. Combine Proposition 4.6, Lemma 4.10 and Remark 4.11. q.e.d.

Corollary 4.13. Let (V, f, i) be a unital associative K-algebra. Let η : V ⊗ V → K be
an associative K-linear map and let g be the corresponding K-linear map V → K. Then
(V, f, i, η) is a Frobenius K-algebra, that is, (V, f, g, i) is a Frobenius K-algebra, if and only
if 2. or 3. of Proposition 4.12 are satisfied.

We have everything we need in order to prove the following fundamental:

Theorem 4.14. Let (V, f, g, i) be a Frobenius K-algebra. Then there is unique a K-linear
map h : V → V ⊗ V such that (V, g, h) is a counital coassociative K-coalgebra (that is, the
realtions (c), (c′) and (d) of Φ hold) and the relations (e) and (e′) of Φ hold.

Proof. Let us consider the corresponding associative K-linear map η : V ⊗ V → K and let γ
be the unique K-linear map γ : K→ V ⊗ V of point 3. of Proposition 4.12.
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At first, let ϕ : V ⊗V ⊗V → K be the unique K-linear map such that ϕ(x⊗y⊗z) = η(i(x⊗
y)⊗z) = η(x⊗ i(y⊗z)) for every x, y, z ∈ V . In other words, ϕ = η ◦ (i⊗1V ) = η ◦ (1V ⊗ i).
Let us observe that (V ⊗ V 1V ⊗1V ⊗γ−−−−−−−→ V ⊗ V ⊗ V ⊗ V ϕ⊗1V−−−−→ V ) = (V ⊗ V i−→ V ). Indeed:

(ϕ⊗ 1V ) ◦ (1V ⊗ 1V ⊗ γ) = (η ⊗ 1V ) ◦ (i⊗ 1V ⊗ 1V ) ◦ (1V ⊗ 1V ⊗ γ)

= (η ⊗ 1V ) ◦ ((i ◦ (1V ⊗ 1V ))⊗ ((1V ⊗ 1V ) ◦ γ))

= (η ⊗ 1V ) ◦ (i⊗ γ)

[(η ⊗ 1V ) ◦ (1V ⊗ γ) = 1V ] = (η ⊗ 1V ) ◦ (1V ⊗ γ) ◦ i
= 1V ◦ i = i.

Analogously it is the case that (V ⊗V γ⊗1V ⊗1V−−−−−−−→ V ⊗V ⊗V ⊗V 1V ⊗ϕ−−−−→ V ) = (V ⊗V i−→ V ).

Hence it is the case that (V
γ⊗1V−−−−→ V ⊗ V ⊗ V 1V ⊗i−−−→ V ⊗ V ) = (V

1V ⊗γ−−−−→ V ⊗ V ⊗ V i⊗1V−−−→
V ⊗ V ), as:

(1V ⊗ i) ◦ (γ ⊗ 1V ) = (1V ⊗ ϕ⊗ 1V ) ◦ (1V ⊗ 1V ⊗ 1V ⊗ γ) ◦ (γ ⊗ 1V )

= (1V ⊗ ϕ⊗ 1V ) ◦ (γ ⊗ 1V ⊗ 1V ⊗ 1V ) ◦ (1V ⊗ γ)

= (i⊗ 1V ) ◦ (1V ⊗ γ).

Finally, we define (V
h−→ V ⊗ V ) := (1V ⊗ i) ◦ (γ ⊗ 1V ) = (i⊗ 1V ) ◦ (1V ⊗ γ). By applying

the relations 1V = (η ⊗ 1V ) ◦ (1V ⊗ γ) and 1V = (1V ⊗ η) ◦ (γ ⊗ 1V ) we also get that the
dual realtion (η⊗ 1V ) ◦ (1V ⊗ h) = i = (1V ⊗ η) ◦ (h⊗ 1V ). Now we prove that (V, g, h) is a
counital coassociative K-coalgebra. The element (d) of Φ holds because:

(h⊗ 1V ) ◦ h = (1V ⊗ i⊗ 1V ) ◦ (γ ⊗ 1V ⊗ 1V ) ◦ (i⊗ 1V ) ◦ (1V ⊗ γ)

= (1V ⊗ i⊗ 1V ) ◦ (γ ⊗ i⊗ 1V ) ◦ (1V ⊗ γ)

= (1V ⊗ i⊗ 1V ) ◦ (1V ⊗ 1V ⊗ i⊗ 1V ) ◦ (γ ⊗ 1V ⊗ γ)

[(d′)] = (1V ⊗ i⊗ 1V ) ◦ (1V ⊗ i⊗ 1V ⊗ 1V ) ◦ (γ ⊗ 1V ⊗ γ)

= (1V ⊗ i⊗ 1V ) ◦ (1V ⊗ i⊗ γ) ◦ (γ ⊗ 1V )

= (1V ⊗ i⊗ 1V ) ◦ (1V ⊗ 1V ⊗ γ) ◦ (1V ⊗ i) ◦ (γ ⊗ 1V )

= (1V ⊗ h) ◦ h.

Moreover, the element (c) holds as well, since:

(g ⊗ 1V ) ◦ h = ((g ◦ 1V )⊗ 1V ) ◦ h
[(b)] = ((g ◦ i ◦ (f ⊗ 1V ))⊗ 1V ) ◦ h

= ((η ◦ (f ⊗ 1V ))⊗ 1V ) ◦ h
= (η ⊗ 1V ) ◦ (f ⊗ 1V ⊗ 1V ) ◦ h
= (η ⊗ 1V ) ◦ (1V ⊗ h) ◦ (f ⊗ 1V )

[(η ⊗ 1V ) ◦ (1V ⊗ h) = i] = i ◦ (f ⊗ 1V )

[(b)] = 1V .

Analogously, by applying the element (b′) we get that the element (c′) holds as well. Now
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we prove that (e) and (e′) hold. Indeed:

h ◦ i = (1V ⊗ i) ◦ (γ ⊗ 1V ) ◦ i
= (1V ⊗ i) ◦ (1V ⊗ 1V ⊗ 1V ) ◦ (γ ⊗ i)
= (1V ⊗ i) ◦ (1V ⊗ 1V ⊗ i) ◦ (γ ⊗ 1V ⊗ 1V )

[(d′)] = (1V ⊗ i) ◦ (1V ⊗ i⊗ 1V ) ◦ (γ ⊗ 1V ⊗ 1V )

[h = (1V ⊗ i) ◦ (γ ⊗ 1V )] = (1V ⊗ i) ◦ (h⊗ 1V )

and (e) holds. Analogously one proves that (e′) holds as well.
We are left to prove that such an h is unique. Let h′ be a K-linear map V → V ⊗ V

such that the properties (d), (c), (c′), (e) and (e′) hold with h′ in place of h. Observe that
actually only (c) and (e′) are needed. Then:

(η ⊗ 1V ) ◦ (1V ⊗ (h′ ◦ f)) = ((g ◦ i)⊗ 1V ) ◦ (1V ⊗ (h′ ◦ f))

= (g ⊗ 1V ) ◦ (i⊗ 1V ) ◦ (1V ⊗ h′) ◦ (1V ⊗ f)

[(e′)] = (g ⊗ 1V ) ◦ h′ ◦ i ◦ (1V ⊗ f)

[(c), (b′)] = 1V ◦ 1V = 1V

that is, by Remark 4.11, it is the case that h′ ◦ f = γ. Hence observe that:

h′ = h′ ◦ 1V

[(b′)] = h′ ◦ i ◦ (1V ⊗ f)

[(e′)] = (i⊗ 1V ) ◦ (1V ⊗ h′) ◦ (1V ⊗ f)

= (i⊗ 1V ) ◦ (1V ⊗ (h′ ◦ f))

[h′ ◦ f = γ] = (i⊗ 1V ) ◦ (1V ⊗ γ)

[definition of h] = h.

We are done. q.e.d.

The opposite result holds as well:

Theorem 4.15. Let (V, f, g, h, i) be a 5-tuple such that (V, f, i) is a unital associative K-
algebra (that is, the relations (b), (b′) and (d′) of Φ hold) and (V, g, h) is a counital coas-
sociative K-coalgebra (that is, the relations (c), (c′) and (d) of Φ hold). Moreover let us
assume that the relations (e) and (e′) of Φ hold as well. Then (V, f, g, i) is a Frobenius
K-algebra (and in particular V is finite dimensional).

Proof. Let η be the associative K-linear map V ⊗V → K corresponding to g, that is η = g◦i
(see Remark 4.4). Moreover, let γ := h ◦ f . Then it is the case that:

(η ⊗ 1V ) ◦ (1V ⊗ γ) = (g ⊗ 1V ) ◦ (i⊗ 1V ) ◦ (1V ⊗ h) ◦ (1V ⊗ f)

[(e′)] = (g ⊗ 1V ) ◦ h ◦ i ◦ (1V ⊗ f)

[(c), (b′)] = 1V ◦ 1V = 1V .

Then condition 2. of Proposition 4.12 is verified and by Corollary 4.13 it is the case that
(V, f, g, i) is a Frobenius K-algebra (and in particular V is finite dimensional). q.e.d.
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Corollary 4.16 (“How to talk about Frobenius K-algebras by only involving the symmetric
monoidal categorical structure of K-Vect”). A Frobenius K-algebra is precisely a 5-tuple
(V, f, g, h, i) such that (V, f, i) is a unital associative K-algebra and (V, g, h) is a counital
coassociative K-coalgebra and the relations (e) and (e′) of Φ hold. In other words, a Frobe-
nius K-algebra is precisely a 5-tuple (V, f, g, h, i) such that the relation (b), (b′), (c), (c′),
(d), (d′), (e) and (e′) of Φ hold. In particular V is finite dimensional.

Proof. Combine Theorem 4.14 and Theorem 4.15. q.e.d.

We said that a Frobenius K-algebra (V, f, g, i) is commutative if and only if the unital
associative K-algebra (V, f, i) is commutative, that is, if and only if condition (a′) of Φ holds.
Equivalently a Frobenius K-algebra (V, f, g, h, i) is commutative if and only if (V, f, i) is
commutative i.e. if and only if condition (a′) holds. Analogously, we say that:

Definition 4.17. A Frobenius K-algebra (V, f, g, h, i) is cocommutative if and only if the
counital coassociative K-algebra (V, g, h) is cocommutative i.e. if and only if condition (a)
of Φ holds (see Definition 4.9).

Proposition 4.18. Let (V, f, g, h, i) be a Frobenius K-algebra. Then it is commutative if
and only if it is cocommutative.

Proof. We only need to prove the equivalence (a′) ⇐⇒ (a). Let us prove the implication
(a′) =⇒ (a) (the other one is analogous). Then let us assume that (a′) holds and let us
prove that (a) holds as well. Let h′ := σ(V,V ) ◦ h : V → V ⊗ V . Then we only need to prove
that h′ = h. As we saw in the proof of Theorem 4.14 (the proof of the uniqueness of h), this
follows if h′ verifies (c) and (e′) in place of h. Hence it suffices to prove that h′ verifies them.
The property (c) for h′ is just the property (c′) for h, as (g⊗1V )◦h′ = (g⊗1V )◦σ(V,V ) ◦h =

(1V ⊗ g) ◦ h (c′)
= 1V . Moreover:

(i⊗ 1V ) ◦ (1V ⊗ h′) = (i⊗ 1V ) ◦ (1V ⊗ σ(V,V )) ◦ (1V ⊗ h)

[(a′)] = ((i ◦ σ(V,V ))⊗ 1V ) ◦ (1V ⊗ σ(V,V )) ◦ (1V ⊗ 1V ⊗ 1V ) ◦ (1V ⊗ h)

[(σ(V,V ))
2 = 1V ⊗ 1V ] = (i⊗ 1V ) ◦ (σ(V,V ) ⊗ 1V ) ◦ (1V ⊗ σ(V,V )) ◦ (σ(V,V ) ⊗ 1V )2 ◦ (1V ◦ h)

[♣] = (i⊗ 1V ) ◦ ((1V ⊗ σ(V,V )) ◦ (σ(V,V ) ⊗ 1V ))2 ◦ (1V ◦ h)

[♠] = σ(V,V ) ◦ (1V ⊗ i) ◦ (h⊗ 1V ) ◦ σ(V,V )

[(e) for h] = σ(V,V ) ◦ h ◦ i ◦ σ(V,V )

[(a′)] = h′ ◦ i

where: the equality ♣ holds because ((σ(V,V )⊗1V )◦(1V ⊗σ(V,V ))◦(σ(V,V )⊗1V ))(x⊗y⊗z) =
(z⊗y⊗x) = ((1V ⊗σ(V,V ))◦(σ(V,V )⊗1V )◦(1V ⊗σ(V,V )))(x⊗y⊗z) for every x, y, z ∈ V , hence
(σ(V,V )⊗1V )◦(1V ⊗σ(V,V ))◦(σ(V,V )⊗1V ) = (1V ⊗σ(V,V ))◦(σ(V,V )⊗1V )◦(1V ⊗σ(V,V )); the
equality ♠ holds because ((i⊗1V )◦ (1V ⊗σ(V,V ))◦ (σ(V,V )⊗1V ))(x⊗y⊗z) = i(y⊗z)⊗x =
(σ(V,V )◦(1V ⊗i))(x⊗y⊗z) and ((1V ⊗σ(V,V ))◦(σ(V,V )⊗1V )◦(1V ◦h))(x⊗y) = (h(y)⊗x) =
((h⊗1V )◦σ(V,V ))(x⊗y) for every x, y, z ∈ V , hence (i⊗1V )◦(1V ⊗σ(V,V ))◦(σ(V,V )⊗1V ) =
σ(V,V ) ◦ (1V ⊗ i) and (1V ⊗ σ(V,V )) ◦ (σ(V,V ) ⊗ 1V ) ◦ (1V ◦ h) = (h ⊗ 1V ) ◦ σ(V,V ). Observe
that the equalities ♠ and ♣ are the analogous of the equalities ζ5 and ζ3, ζ4 of Theorem 3.6
involving the arrow [T ] and verified characterising that [T ] is τ(1,1). We proved that the
property (e′) for h′ holds and we are done. q.e.d.
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Corollary 4.19. A commutative Frobenius K-algebra is precisely a 5-tuple (V, f, g, h, i) such
that all the relations of the set Φ hold. In particular V is finite dimensional.

Corollary 4.20. Let F be a symmetric monoidal functor (S,t, ∅, τ)→ (K-Vect,⊗,K, σ).
Let V := F1, f := F [lE], g := F [rE], h := F [lF ] and i := F [rF ]. Then the 5-tuple
(V, f, g, h, i) is a commutative Frobenius K-algebra. In particular V is finite dimensional.

Proof. Combine Proposition 4.2 and Corollary 4.19. q.e.d.

We proved that every symmetric monoidal functor (S,t, ∅, τ)→ (K-Vect,⊗,K, σ) is in
particular a commutative Frobenius K-algebra. As anticipated, we would also like to prove
that the commutative Frobenius K-algebras are precisely the symmetric monoidal functors
(S,t, ∅, τ)→ (K-Vect,⊗,K, σ).

Remark 4.21. Let (V, f, g, h, i) be a commutative Frobenius K-algebra. Let F be the
unique symmetric monoidal functor (S,t, ∅, τ) → (K-Vect,⊗,K, σ) such that F1 = V ,
F [lE] = f , F [rE] = g, F [lF ] = h and F [rF ] = i. As the objects of S are the finite disjoint
unions of copies of 1 and S (see Theorem 3.4) is a generating class of the symmetric monoidal
category (S,t, ∅, τ), a symmetric monoidal functor whose domain is (S,t, ∅, τ) is completely
determined by the values that it assumes on the objects ∅, 1 and the arrows [1], [T ], [lE],
[rE], [lF ], [rF ]. However, if a functor is symmetric monoidal then the values on ∅, [1] and
[T ] are forced to be K, 1• and σ(•,•) respectively, being • the value assumed on 1. Hence, if
F exists then it is unique. Let us verify that these assignments actually define a symmetric
monoidal functor. As we want F to be a symmetric monoidal functor, in the definition of F
we mean that F∅ = K, F [1] = 1V and F [T ] = σ(V,V ). Then, if F preserves the compositions
and converts the functor t into the functor ⊗, it is the case that F automatically preserves
the identities, converts the ∅-functor into the K-functor and sends τ to σ. Therefore in order
to conclude we only need to prove that F preserves the composition and that it converts
the functor t into the functor ⊗. As R (see Theorem 3.6) is a complete class of relations for
S, every possible equality involving the elements of S, the composition and the t-relation
only is a consequence of the elements of R. Hence, in order to prove that F preserves the
composition and converts t into ⊗ (i.e. in order to conclude) it suffices to verify that this
happens for the elements of R i.e. that the elements of the set Φ hold. But this is indeed
the case because (V, f, g, h, i) is a commutative Frobenius K-algebra. We are done.

Corollary 4.22 (Characterisation of the bidimensional TQFTs w.r.t. K (restricted to S)).
A symmetric monoidal functor (S,t, ∅, τ) → (K-Vect,⊗,K, σ) is precisely a commutative
Frobenius K-algebra. That is, the image (V, f, g, h, i) of a given symmetric monoidal func-
tor (S,t, ∅, τ) → (K-Vect,⊗,K, σ) is a commutative Frobenius K-algebra and, whenever
(V, f, g, h, i) is a commutative Frobenius K-algebra, there is unique a symmetric monoidal
functor (S,t, ∅, τ)→ (K-Vect,⊗,K, σ) whose image is (V, f, g, h, i).

Proof. Combine Corollary 4.20 and Remark 4.21. q.e.d.

Main result about the bidimensional TQFTs

We essentially proved that every bidimensional TQFT w.r.t K is a commutative Frobenius
K-algebra and viceversa. The main result that we are going to prove in this subsection
says a little bit more. Suppose that F is a bidimensional TQFT w.r.t K and suppose
that (V, f, g, h, i) is the corresponding commutative Frobenius K-algebra. Intuitively the
main result says that the behaviour of F w.r.t. all the other bidimensional TQFTs w.r.t
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K is precisely the behaviour of (V, f, g, h, i) w.r.t. all the other commutative Frobenius
K-algebras. In other words, the arrows that link F to the other bidimensional TQFTs
w.r.t. K are in bijective correspondence with the arrows that link (V, f, g, h, i) to the other
commutative Frobenius K-algebras.

Definition 4.23. Let (V, f, g, h, i, ) and (V ′, f ′, g′, h′, i′) be Frobenius K-algebras. A ho-
momorphism of Frobenius K-algebras (V, f, g, h, i, ) → (V ′, f ′, g′, h′, i′) is a K-linear map
ϕ : V → V ′ such that ϕ : (V, f, i) → (V ′, f ′, i′) is a homomorphism of unital associative K-
algebras (see Proposition 4.3) and ϕ : (V, g, h)→ (V ′, g′, h′) is a homomorphism of counital
coassociative K-coalgebras (see Definition 4.9).

We indicate as frAlg(K) the category whose objects are the Frobenius K-algebras and
whose arrows are the homomorphism of Frobenius K-algebras between them. We indicare
as cfrAlg(K) the category whose objects are the commutative Frobenius K-algebras and
whose arrows are the homomorphism of Frobenius K-algebras between them, that is, the
full subcategory of frAlg(K) spanned by the commutative Frobenius K-algebras.

Remark 4.24 (Almost the main result). Let E be the category whose objects are the
symmetric monoidal functors (S,t, ∅, τ) → (K-Vect,⊗,K, σ) and whose arrows are the
monoidal natural transformations between them (see Definition 1.6). In other words E :=
K-linRep(S,t, ∅, τ) (see Definition 1.9). Let ϕ : F → F ′ be an arrow of E. As usual, let

(V, f, g, h, i) and (V ′, f ′, g′, h′, i′) be the images of F and F ′ respectively. Then (F∅ ϕ∅−−→
F ′∅) = (K 1K−→ K). Moreover, for every choice of objects A,B of S, it is the case that

(F (A t B)
ϕAtB−−−−→ F ′(A t B)) = (FA

ϕA−−→ GA) ⊗ (FB
ϕB−−→ F ′B). Hence, as every object

of S (different from ∅) is a finite disjoint union of copies of 1, it is the case that every
component of ϕ (different from the ∅-one) is a finite ⊗-paralleling of copies of ϕ1 : V → V ′.
In particular, it is the case that ϕ is completely determined by ϕ1. Finally, as ϕ is a natural
transformation, it is the case that the following diagrams:

F∅ G∅ F1 G1 F1 G1 F2 G2

F1 G1 F∅ G∅ F2 G2 F1 G1

F [lE]

ϕ∅

G[lE] F [rE]

ϕ1

G[rE] F [lF ]

ϕ1

G[lF ] F [rF ]

ϕ2

G[rF ]

ϕ1 ϕ∅ ϕ2 ϕ1

commute. As ϕ2 = ϕ1 ⊗ ϕ1 and ϕ∅ = 1K, this means that ϕ1 ◦ f = f ′, g′ ◦ ϕ1 = g,
h′ ◦ ϕ1 = (ϕ1 ⊗ ϕ1) ◦ h and ϕ1 ◦ i = i′ ◦ (ϕ1 ⊗ ϕ1). In other words, it is the case that
ϕ1 is both a homomorphism of unital associative K-algebras (V, f, i) → (V ′, f ′, g′) and a
homomorphism of counital coassociative K-coalgebras (V, g, h)→ (V ′, g′, h′), that is, it is the
case that ϕ1 is a homomorphism of Frobenius K-algebras (V, f, g, h, i) → (V ′, f ′, g′, h′, i′).
Hence there exists a functor Ψ: E→ cfrAlg(K) sending every symmetric monoidal functor
(S,t, ∅, τ)→ (K-Vect,⊗,K, σ) to its image and every monoidal natural transformation ϕ
between symmetric monoidal functors to its 1-component ϕ1. Corollary 4.22 tells us that
this functor is bijective on the objects.

Let F, F ′ be objects of E and let (V, f, g, h, i) := ΨF and (V ′, f ′, g′, h′, i′) := ΨF ′. Let
ϕ,ψ be arrows F → F ′. If Ψϕ = Ψψ, then ϕ1 = ψ1, hence ϕ = ψ, as, for every n ∈ N, it is
the case that ϕn and ψn are ⊗-parallelings of n copies of ϕ1 and ψ1 respectively. Hence Ψ
is faithful.

Moreover, whenever x : V → V ′ is a homomorphism of Frobenius K-algebras ΨF → ΨF ′,
it is the case that the four squares of before commute with 1K in place of ϕ∅, x in place of ϕ1

and x⊗ x in place of ϕ2. Let ψn be the ⊗-paralleling of n-copies of x for every n ∈ N \ {0}
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and let ψ∅ = 1K. As the class S (see Theorem 3.4) is a generating class of (S,t, ∅, τ) and
as the components of ψ commute with the elements of S (this is the commutativity of the
squares of before with ψ in place of ϕ), it is the case that the components of ψ commute
with all the arrows of S, that is, ψ is a natural transformation F → F ′. Moreover ψ is
monoidal by its own definition, hence it is an arrow F → F ′ of E. Finally, since ψ1 = x and
since x was an arbitrary arrow ΨF → ΨF ′ of cfrAlg(K), it is the case that Ψ is full.

As F is fully faithful and bijective on the objects, we conclude that it is an isomorphism
of categories E ∼= cfrAlg(K).

Theorem 4.25 (The main result). There is an equivalence of categories 2tQft(K) '
cfrAlg(K).

Proof. By Remark 4.24, it suffices to prove that there is an equivalence of categories
2tQft(K) ' E. Remind that:

2tQft(K) = SymMonCat((2Cob,t, ∅, τ), (K-Vect,⊗,K, σ))

(see Definition 2.11) and that:

E = SymMonCat((S,t, ∅, τ), (K-Vect,⊗,K, σ))

(see Remark 4.24 and Definition 1.9). Moreover we remind that S is a skeleton of 2Cob,

hence in particular the inclusion functor S
ι
↪−→ 2Cob is an equivalence of categories. Clearly

it preserves t, ∅ and τ , hence it is a symmetric monoidal functor. Therefore there is

a functor Ω: 2tQft(K) → E such that ΩF = F ◦ (S
ι
↪−→ 2Cob) for every object F of

2tQft(K) and such that every arrow {ϕA}(A object of 2Cob) = ϕ of 2tQft(K) is sent to its

restriction {ϕA}(A object of S) = ϕ ◦ (S
ι
↪−→ 2Cob). Let us pick a pseudoinverse p : 2Cob→ S

of S
ι
↪−→ 2Cob (it exists because S → 2Cob is an equivalence of categories), that is, there

are natural isomorphisms p ◦ ι ∼= 1S and ι ◦ p ∼= 12Cob. It is the case that p is naturally
isomorphic to a symmetric monoidal functor (see [1]). Hence we can assume that p is a
symmetric monoidal functor as well. Moreover we can assume that the natural isomorphisms
a : p ◦ ι ∼= 1S and b : ι ◦ p ∼= 12Cob are monoidal (see [1]). Let Λ: E → 2tQft(K) be such
that ΛG = G ◦ p for every object G of E and Λψ = ψ ◦ p for every arrow ψ of E.

For every object G of E, it is the case that a∗G : ΩΛG = G◦p◦i
a∼= G◦1S = G is a monoidal

natural isomorphism, that is, an isomorphism of E. One can verify that a∗G is natural in G.
Then a∗ is a natural isomorphism ΩΛ→ 1E. Analogously, for every object F of 2tQft(K),

it is the case that b∗F : ΛΩF = F ◦ i ◦ p
b∼= F ◦ 12Cob = F is a monoidal natural isomorphism,

that is, an isomorphism of 2tQft(K). One can verify that b∗F is natural in F . Then b∗ is
a natural isomorphism ΛΩ → 12tQft(K). Hence we proved that Λ is a pseudoinverse of Ω,
that is, Ω is an equivalence of categories. q.e.d.

A simple generalisation of the main result

Theorem 4.25 is the explicit description of the category of the bidimensional TQFTs that
we were looking for. We conclude with the following:

Remark 4.26. In Section 1 we explained how to define a monoid-object in a category with
finite products. We observed that we are able to do this just because we can talk about
monoids by only involving the notions of finite product and composition in Set. In fact
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that means that a category with finite products is precisely what we need in order to talk
about a monoid.

Remind that we characterised (Corollary 4.16 and Corollary 4.19) the notion of (com-
mutative) Frobenius K-algebra in such a way that we can talk about it by only involving the
(symmetric) monoidal categorical structure of (K-Vect,⊗,K, σ). Hence this means that
a (symmetric) monoidal categorical structure is everything we need in order to talk about
(commutative) Frobenius algebras. Let (C,⊗, η, σ) be a symmetric monoidal category. A
(commutative) Frobenius algebra-object in (C,⊗, η, σ) is a 5-tuple (V, f, g, h, i), where V is
an object of C and f : η(∗) → V , g : V → η(∗), h : V → V ⊗ V and i : V ⊗ V → V are
arrows of C, such that the relations ((a), (a′)), (b), (b′), (c), (c′), (d), (d′), (e) and (e′) of
the set Φ are verified. Observe that a (commutative) Frobenius K-algebra is just a (com-
mutative) Frobenius algebra-object in (K-Vect,⊗,K, σ), precisely as a monoid is nothing
but a monoid-object in Set (see Section 1) or as a ring is nothing but a ring-object in Set.

Let (C,⊗, η, σ) be a symmetric monoidal category and let:

ntQft(C,⊗, η, σ) := SymMonCat((nCob,t, ∅, τ), (C,⊗, η, σ))

(observe that ntQft(K) = ntQft(K-Vect,⊗,K, σ)) for every n ∈ N.
Observe that the proofs of Corollary 4.22 and Theorem 4.25 do not depend on the fact

that (C,⊗, η, σ) = (K-Vect,⊗,K, σ). In fact they only depend on the symmetric monoidal
structure of (K-Vect,⊗,K, σ). We never used in these proofs the non-symmetric monoidal
categorical structure of (K-Vect,⊗,K, σ) (we only used it to prove the characterisations of
the notion of (commutative) Frobenius K-algebra provided by Corollary 4.16 and Corollary
4.19, but now this does not matter, since we defined a (commutative) Frobenius algebra-
object as a 5-tuple that already satisfies the right member of these characterisations). Hence
we can repeat the same arguments in order to get that an object of 2tQft(C,⊗, η, σ) is
precisely a commutative Frobenius algebra-object in (C,⊗, η, σ) and that there is an equiv-
alence of categories 2tQft(C,⊗, η, σ) ' cfrAlg(C,⊗, η, σ), being cfrAlg(C,⊗, η, σ) the
category whose objects are the commutative Frobenius algebra-objects in (C,⊗, η, σ) and
whose arrows are as usual the arrows of C preserving the structure of commutative Frobenius
algebra-object (see Definition 4.23).
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Appendix

1. About the notion of classic model of a given first-order theory. We briefly present the
formal definition of the notion of classic model of a given first-order theory. Let us consider
a countable set X whose elements will be called variables.

Let L be a first-order language, that is, a set of function-symbols (each of them with a
given arity) and of relation-symbols (again each of them with a given arity). We inductively
define the L-terms as follows:

(i) every variable x is an L-term;

(ii) whenever n is a natural number, t1, t2, ..., tn are L-terms and f is an n-ary function-
symbol of the language L, it is the case that f(t1, t2, ..., tn) is an L-term.

We inductively define the L-formulas as follows:

(i) whenever s and t are L-terms, it is the case that s = t is an L-formula;

(ii) whenever n is a natural number, t1, t2, ..., tn are L-terms and R is an n-ary relation-
symbol of the language L, it is the case that R(t1, t2, ..., tn) is an L-formula;

(iii) whenever ϕ and ψ are L-formulas, it is the case that ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ and
ϕ↔ ψ are L-formulas;

(iv) whenever x is a variable and ϕ is an L-formula, it is the case that ∃xϕ and ∀xϕ are
L-formulas.

Finally we say that an L-structure S is a set S together with: a function fS : Sn → S for
every n-ary function symbol f of the language L; a relation RS ⊆ Sn for every n-ary relation
symbol R of the language L.

Let S be an L-structure and let v be a map X → S. Whenever x ∈ X and a ∈ S we
denote as v[x/a] the unique map X → S such that v[x/a](x) = a and v[x/a](y) = v(y)
whenever y ∈ X \ {x}. We inductively define the (S, v)-evaluation [denoted as t(S,v)] of an
L-term t as follows:

(i) if t = x is a variable, then t(S,v) = x(S,v) := v(x);

(ii) if n is a natural number, t1, t2, ..., tn are L-terms and f is an n-ary function-symbol

of the language L, then f(t1, t2, ..., tn)(S,v) := fS(t
(S,v)
1 , t

(S,v)
2 , ..., t

(S,v)
n ).

We say that the L-structure S together with the map v verifies/models the L-formula ϕ [and
we denote this as (S, v) � ϕ] if:

(i) ϕ is s = t (for L-terms s and t) and it is the case that s(S,v) = t(S,v);

(ii) ϕ is R(t1, t2, ..., tn) [for a natural number n, some L-terms t1, t2, ..., tn and an n-ary

relation-symbol R of L] and it is the case that (t
(S,v)
1 , t

(S,v)
2 , ..., t

(S,v)
n ) ∈ RS ;

(iii) ϕ is ¬ψ [for some L-formula ψ] and it is not the case that (S, v) � ψ;

(iv) ϕ is ψ1 ∧ ψ2 [for L-formulas ψ1 and ψ2] and it is the case that (S, v) � ψ1 and
(S, v) � ψ2;

(v) ϕ is ψ1∨ψ2 [for L-formulas ψ1 and ψ2] and it is the case that (S, ϕ) � ψ1 or (S, ϕ) � ψ2;
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(vi) ϕ is ψ1 → ψ2 [for L-formulas ψ1 and ψ2] and it is the case that, whenever (S, v) � ψ1,
then (S, v) � ψ2;

(vii) ϕ is ψ1 ↔ ψ2 [for L-formulas ψ1 and ψ2] and it is the case that (S, v) � ψ1 if and only
if (S, v) � ψ2.

(viii) ϕ is ∃xψ [for some variable x and some L-formula ψ] and there is a ∈ S such that
(S, v[x/a]) � ψ;

(ix) ϕ is ∀xψ [for some variable x and some L-formula ψ] and for every a ∈ S it is the case
that (S, v[x/a]) � ψ.

Now, for every L-term t we denote as FV (t) the set of the variables appearing in t (we
could define inductively FV (t) for every L-term t) and for every L-formula ϕ we denote
as FV (ϕ) the set of the variables appearing at least once in ϕ out of the scope of any
quantifier appering in ϕ (again, one could give an inductive definition of FV (ϕ) for every
L-formula ϕ). Then for every L-structure S and for every choice of maps v, w : X → S the
following facts hold: for every L-term t, if v �FV (t)= w �FV (t) then t(S,v) = t(S,w) and for
every L-formula ϕ, if v �FV (ϕ)= w �FV (ϕ) then (S, v) � ϕ if and only if (S, w) � ϕ. That
means that, whenever an L-formula ϕ is an L-sentence, i.e. FV (ϕ) = ∅, then: the fact that
(S, v) � ϕ or not does not depend on the choice of the map v : X → S. Hence we say that S
verifies/models ϕ [and we denote it as S � ϕ] if and only if there is a map v : X → S such
that (S, v) � ϕ. Finally, an L-theory is just a set of L-sentences. We say that an L-structure
S is a classic model of a theory T if and only if S � ϕ for every ϕ ∈ T .

2. Some clarifications about the categorical notation used during the essay. Let us recall
the notion of product between the objects of a category and illustrate the corresponding
standard notation (the one that is usually adopted in the literature as well). Let C be a
category and let F be a family of objects of C. We remind that a product of the family F
is an object X of C together with an arrow pC : X → C of C for every object C of F , such
that the following universal property is satisfied: for every object Y of C together with an
arrow qC : Y → C of C for every object C of F , there is unique an arrow q : Y → X such
that the following diagram:

Y

X C

qCq

pC

commutes for every object C of F . Applying their universal properties one can easily verify
that any two products (X, {pC}(C in F )) and (X ′, {p′C}(C in F )) of F are such that X and
X ′ are isomorphic through a unique isomorphism f : X → X ′ of C that commutes with the
arrows pC and p′C for every object C in F , that is, the following diagram:

X

X ′ C

pCf

p′C

commutes for every C in F . Hence, if a product of F exists then it is essentially unique.
The category Set has a natural choice of a product for every family of objects of itself: it
is just the usual cartesian product between sets with the usual projection maps to each one
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of its factors. However, this is not always the case. Usually, if a category has products (see
below) then one assumes that a choice of a product for every family of objects has already
been taken. That is why during the essay we always talk about the product of a given family
of objects of a given category.

Let us assume that the family F of objects of C is finite. We denote its objects as X1, X2

and Xn. During the essay we denote its product has (X1 ×X2 × ...×Xn, {πi}i∈{1,2,...,n}).
Moreover, whenever Y is an object of C and there is an arrow qi : Y → Xi of C for every
i ∈ {1, 2, ..., n}, then during the essay we indicate as 〈q1, q2, ..., qn〉 the arrow Y → X1 ×
X2 × ...×Xn whose existence and whose uniqueness are ensured by the universal property
of the product X1 ×X2 × ... ×Xn. Moreover, if Y1, Y2 and Yn are objects of C and there
is an arrow fi : Yi → Xi of C for every i ∈ {1, 2, ..., n}, then during the essay we denoted as
f1 × f2 × ...× fn the unique arrow Y1 × Y2 × ...× Yn such that the diagram:

Y1 × Y2 × ...× Yn Yi

X1 ×X2 × ...×Xn Xi

πi

f1×f2×...×fn fi

πi

commutes for every i ∈ {1, 2, ..., n} (its existence and uniqueness are ensured by the universal
property of X1×X2× ...×Xn considering the set of arrows fi ◦ πi : Y1×Y2× ...×Yn → Xi

for every i ∈ {1, 2, ..., n}). Observe that we used the same symbol to name the arrows
Y1 × ... × Yn → Yi and X1 × ... × Xn → Xi exhibiting Y1 × ... × Yn and X1 × ... × Xn

as products, as it does not generate any ambiguity. Observe that during the essay we use
this notation even if the objects Xi and Yi are categories and the arrows fi are functors
between them (i.e. even if C is a category whose objects are categories and whose arrows
are functors). If F is empty then its product (if it exists) by definition is just an object 1
of C such that for every object Y of C there is unique an arrow Y → 1, that in the essay we
denote as !Y (or ! if there is no ambiguity). The object 1 (unique up to unique isomorphism
of C) is called terminal object of C if it exists.

We say that the category C has small products or simply that it has products if and only
if, for every family F of objects of C, there is a product of F in C. We say that the category
C has finite products if, for every finite family F of objects of C, there is a product of F in
C. In particular, if C has finite products then it has the terminal object 1. Viceversa, if C
has the terminal object 1 and every family F of object of C of cardinality 2 has a product,
then one can verify that C has finite products.

Let K be a field. Sometimes during the essay we invoke the so-called universal property
of the tensor product of two K-linear spaces. As for every universal property, it characterises
(up to some notion of isomorphism) the object that verifies it. Hence we can consider the
following definition of tensor product. Let V and W be K-linear spaces. Then a tensor
product of V and W is a K-linear space T together with a K-bilinear map f : V ×W → T
such that the following universal property is satisfied: whenever S is a K-linear space and
g : V ×W → S is a K-bilinear map, then there is unique a K-linear map g : T → S such
that the following diagram:

V ×W S

T

g

f
g

commutes. As for the product of a family of object in a category (see above), if (T, f) and
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(T ′, f ′) are tensor products of V and W then there is unique an isomorphism x : T → T ′

commuting with f and f ′ (i.e. such that x ◦ f = f ′).
Let (T, f : V × W → T ) be a tensor product of V and W . Let 〈f(V × W )〉 be the

K-linear subspace of T generated by f(V × W ) and let q be the quotient K-linear map

T → T/〈f(V ×W )〉. Then (V ×W f−→ T
q−→ T/〈f(V ×W )〉) = (V ×W 0−→ T/〈f(V ×W )〉),

that is, the following diagram:

V ×W T/〈f(V ×W )〉

T

0

f
q

commutes. But the following diagram:

V ×W T/〈f(V ×W )〉

T

0

f
0

commutes as well. Hence, by the universal property of the couple (T, f), it is the case that
q = 0 i.e. 〈f(V ×W )〉 = T .

It is the case that a tensor product of two vector spaces V and W always exists. Then, as
before (see above), while working with the category K-Vect for some field K, one can assume
that a choice of a tensor product for every couple of K-linear spaces has already been taken.

If V and W are K-linear spaces, then this choice is usually denoted as (V ⊗W,V ×W ⊗−→
V ⊗W ). If x ∈ V and y ∈ W then the element ⊗(x, y) of V ⊗W is usually denoted as
x ⊗ y. The simple result we proved right above is telling us that V ⊗W is generated by
the elements of the form x⊗ y for x ∈ V and y ∈ W . That is precisely the reason why we
only need to verify a given property on the elements of V ⊗W of this form, if our aim is
to verify that this property holds for any element of V ⊗W . We use this fact a number of
times during the essay.

Other categorical properties of the tensor product that we are interested to and that we
use a lot during the essay are:

• Again, the universal property of the tensor product (V ⊗W,⊗) of two K-linear spaces:
for every K-linear space S, it bijectively coverts the K-bilinear maps V × W → S
into K-linear maps V ⊗W → S. Hence during the essay it allows us to completely
discuss some important notions into the category K-Vect (together with its symmetric
monoidal structure, but without invoking the obscure notion of K-multilinearity, that
does not belong to K-Vect at all!).

• The functoriality of ⊗. Indeed there is a functor K-Vect × K-Vect → K-Vect,
again denoted as ⊗, sending every couple (V,W ) of K-linear spaces into their tensor
product V ⊗W and every couple (f : V → V ′, g : W → W ′) of K-linear maps into
the unique K-linear map V ⊗W → V ′ ⊗W ′ (use the universal property of the couple
(V ⊗W,⊗)) sending the element x ⊗ y to the element f(x) ⊗ g(y) for every x ∈ V
and y ∈ W . In other words, the couple (f, g) is sent into the unique K-linear map
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V ⊗W → V ′ ⊗W ′, denoted as f ⊗ g, making the following diagram:

V ×W V ′ ×W ′ V ′ ⊗W ′

V ⊗W

⊗

f×g ⊗

f⊗g

commute. We use the notation “f ⊗ g ” during the whole essay.

3. Basic category-theoretic notions appering during the essay. We remind that a category C

is a class, whose elements are called objects together with a class C(A,B), for every couple
of objects A and B of C, whose elements are called morphisms or arrows from A to B and
denoted as A→ B, such that: the classes C(A,B) and C(C,D) are disjoint whenever A 6= C
or B 6= D; whenever A,B,C are objects of C, f ∈ C(A,B) and g ∈ C(B,C) then there is
an arrow g ◦ f ∈ C(A,C) and the operation ◦ is associative; for every object A of C, there
is an arrow 1A ∈ C(A,A) (we use this notation during all the essay) such that, for every
object B of C and every arrow f ∈ C(A,B) and every arrow g ∈ C(B,A) it is the case that
f ◦ 1A = f and 1A ◦ g = g. An arrow f : A → B of C is called isomorphism if there is an
arrow g : B → A such that f ◦ g = 1B and g ◦ f = 1A.

We talk about functors a number of times during the essay, but actually we never verify
that a claimed functor actually verifies its definition (that is, that it preserves compositions
and identities). Hence we should at least recall the definition: a functor F between two
categories C and D is a functional relation C → D sending every object C of C to an
object FC of D and every arrow f : C → C ′ to an arrow Ff : FC → FC ′ in such a way
that the compostions and the identity maps are preserved: F (g ◦ f) = Fg ◦ Ff for every
composable arrows f and g of C and F1C = 1FC for every object C of C. Whenever F and
G are functors C → D, we remind that a natural transformation α : F → G is a collection
{αC : FC → GC}C∈C of arrows of D such that the following diagram:

FC GC

FC ′ GC ′

αC

Ff Gf

αC′

commutes for every arrow f : C → C ′ of C.
Of course functors are composable and every category has an identity functor. If C

and D are categories and F is a functor C → D, we remind that F is an isomorphism of
categories if it is an isomorphism in the category whose objects are the categories and whose
arrows are the functors between them, that is, if there is a functor G : D → C such that
F ◦G = 1D and G◦F = 1C. Moreover, we say that F is an equivalence of categories if there
is a functor G : D→ C such that F ◦G and 1D are naturally isomorphic (during the essay
we indicate this as F ◦ G ∼= 1D) and G ◦ F and 1C are naturally isomorphic (G ◦ F ∼= 1C)
(remind that two functors C→ D are naturally isomorphic if there is a natural isomorphism
between them, that is, a natural transformations whose components are isomorphisms). If
two categories C and D are isomorphic (i.e. there is an isomorphism between them) then
during the essay we denote this as C ∼= D. If they are equivalent (i.e. there is an equivalence
between them) then we denote this as C ' D. Of course any isomorphism of categories is
also an equivalence. Remind that a functor F : C→ D is an equivalence of categories if and
only if: F is essentially surjective, that is, for every object D of D there is an object C of
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C such that FC and D are isomorphic in D; F is fully faithful, that is, for every choice of
objects C and C ′ of C, the map C(C,C ′) 3 f 7→ Ff ∈ D(FC,FC ′) is bijective.

Finally, we recall that, given a category C, a subcategory D of C is a category such that:
every object of D is an object of C; every arrow C → C ′ of D is an arrow C → C ′ of C;
for every object D of D, the identity arrow 1D of D in D is also the identity arrow of D in
C; whenever f and g are composable arrows of D, then their composition f ◦ g in D is also
their composition in C. Clearly there is a functor D → C sending every object and every
arrow of D to themselves. We say that a subcategory D of C is a full subcategory of C when
for every choice of objects C,C ′ of D it is the case that D(C,C ′) = C(C,C ′), that is, when
the inclusion functor is fully faithful. We say that a full subcategory D of C is a skeleton of
C when it is the case that every two isomorphic objects of D are equal and every object of
C is isomorphic to an object of D (i.e. the inclusion functor is an equivalence of categories).
As we discuss during the essay, to give a skeleton of a category is equivalent to classifying
its objects up to isomorphism (of that category).

4. Sometimes during the essay we talked about functions between sets by using their set-
theoretic notation, which is just a consequence of the concrete and explicit definition of
function: a function f : X → Y is a subset f ⊆ X × Y such that for every x ∈ X there
is unique y ∈ Y such that (x, y) ∈ f . Hence, to write (x, y) ∈ f corresponds to writing
y = f(x). Sometimes it may be easier to think about a function as a subset of a cartesian
product verifying this so-called property of functionality.
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